Chem. J. Chinese Universities ›› 2023, Vol. 44 ›› Issue (1): 20220620.doi: 10.7503/cjcu20220620
• Review • Previous Articles Next Articles
ZHANG Lingling1, DONG Huanhuan1, HE Xiangxi1,2, LI Li1,2, LI Lin1, WU Xingqiao1(), CHOU Shulei1(
)
Received:
2022-09-17
Online:
2023-01-10
Published:
2022-10-17
Contact:
WU Xingqiao, CHOU Shulei
E-mail:xingqiaowu@wzu.edu.cn;chou@wzu.edu.cn
Supported by:
CLC Number:
TrendMD:
ZHANG Lingling, DONG Huanhuan, HE Xiangxi, LI Li, LI Lin, WU Xingqiao, CHOU Shulei. Progress of Hollow Carbon Materials as Anode for Sodium-ion Battery[J]. Chem. J. Chinese Universities, 2023, 44(1): 20220620.
Material | Reversible capacity | Initial coulombic efficiency(%) | Rate capability | Cycling performance | Ref. | |
---|---|---|---|---|---|---|
Reversible capacity | Cycle | |||||
DHCS | 212.9 mA·h/g at 0.6 A/g | 37 | 113 mA·h/g at 6 A/g | 143.6 mA·h/g at 0.6 A/g | 1000 | [ |
HPSC⁃1400 | 411.1 mA·h/g at 0.02 A/g | 81.20 | 104.1 mA·h/g at 0.5 A/g | 287.5 mA·h/g at 0.1 A/g | 400 | [ |
GLSP⁃SP⁃2⁃800⁃2 | 311.5 mA·h/g at 0.1 A/g | — | 125 mA·h/g at 5 A/g | 111.1 mA·h/g at 5 A/g | 5000 | [ |
NHCS | — | — | 114 mA·h/g at 10 A/g | 163 mA·h/g at 0.5 A/g | 1200 | [ |
S⁃NCNFs | 336.2 mA·h/g at 0.05 A/g | — | 132 mA·h/g at 10 A/g | 187 mA·h/g at 2 A/g | 2000 | [ |
P⁃HCNs03 | 330 mA·h/g at 0.1 A/g | 73 | 252 mA·h/g at 2 A/g | 260 mA·h/g at 1 A/g | 500 | [ |
NPC | 333.6 mA·h/g at 0.1 A/g | — | 172 mA·h/g at 10 A/g | 180.3 mA·h/g at 5 A/g | 3000 | [ |
FPCC | 242.4 mA·h/g at 0.05 A/g | ca. 72 | 123.1 mA·h/g at 1 A/g | ca. 88% at 0.2 A/g | 600 | [ |
N/O⁃CNCs⁃600 | 330 mA·h/g at 0.1 A/g | — | 70 mA·h/g at 20 A/g | ca. 150 mA·h/g at 5 A/g | 10000 | [ |
N⁃CNF | 564 mA·h/g at 0.1 A/g | 35.47 | 154 mA·h/g at 15 A/g | 210 mA·h/g at 5 A/g | 7000 | [ |
HPCO | 290 mA·h/g at 0.1 A/g | 88.60 | 130 mA·h/g at 30 A/g | ca. 190 mA·h/g at 1 A/g | 1000 | [ |
CC700 | 320.6 mA·h/g at 0.05 A/g | 48.01 | 120.6 mA·h/g at 1 A/g | 105 mA·h/g at 1A/g | 8000 | [ |
3DHPCMs⁃800 | 287.5 mA·h/g at 0.1 A/g | 41.90 | 112.5 mA·h/g at 5 A/g | 313.8 mA·h/g at 0.1 A/g | 100 | [ |
NNSC | 311 mA·h/g at 0.1 A/g | 20.5 | 61 mA·h/g at 5 A/g | ca. 105 mA·h/g at 1 A/g | 9000 | [ |
CNT/SNCF | 370.8 mA·h/g at 0.1 A/g | 49.10 | 109.3 mA·h/g at 10 A/g | 150.4 mA·h/g at 5 A/g | 1000 | [ |
SN⁃HCS | 250 mA·h/g at 0.1 A/g | — | 110 mA·h/g at 10 A/g | 169 mA·h/g at 0.5 A/g | 2000 | [ |
N/S/P⁃HCMT | 302 mA·h/g at 0.1 A/g | 70 | 201mA·h/g at 1 A/g | 301 mA·h/g at 0.1 A/g | 100 | [ |
Table 1 Electrochemical performance of HCMs as anode for SIBs
Material | Reversible capacity | Initial coulombic efficiency(%) | Rate capability | Cycling performance | Ref. | |
---|---|---|---|---|---|---|
Reversible capacity | Cycle | |||||
DHCS | 212.9 mA·h/g at 0.6 A/g | 37 | 113 mA·h/g at 6 A/g | 143.6 mA·h/g at 0.6 A/g | 1000 | [ |
HPSC⁃1400 | 411.1 mA·h/g at 0.02 A/g | 81.20 | 104.1 mA·h/g at 0.5 A/g | 287.5 mA·h/g at 0.1 A/g | 400 | [ |
GLSP⁃SP⁃2⁃800⁃2 | 311.5 mA·h/g at 0.1 A/g | — | 125 mA·h/g at 5 A/g | 111.1 mA·h/g at 5 A/g | 5000 | [ |
NHCS | — | — | 114 mA·h/g at 10 A/g | 163 mA·h/g at 0.5 A/g | 1200 | [ |
S⁃NCNFs | 336.2 mA·h/g at 0.05 A/g | — | 132 mA·h/g at 10 A/g | 187 mA·h/g at 2 A/g | 2000 | [ |
P⁃HCNs03 | 330 mA·h/g at 0.1 A/g | 73 | 252 mA·h/g at 2 A/g | 260 mA·h/g at 1 A/g | 500 | [ |
NPC | 333.6 mA·h/g at 0.1 A/g | — | 172 mA·h/g at 10 A/g | 180.3 mA·h/g at 5 A/g | 3000 | [ |
FPCC | 242.4 mA·h/g at 0.05 A/g | ca. 72 | 123.1 mA·h/g at 1 A/g | ca. 88% at 0.2 A/g | 600 | [ |
N/O⁃CNCs⁃600 | 330 mA·h/g at 0.1 A/g | — | 70 mA·h/g at 20 A/g | ca. 150 mA·h/g at 5 A/g | 10000 | [ |
N⁃CNF | 564 mA·h/g at 0.1 A/g | 35.47 | 154 mA·h/g at 15 A/g | 210 mA·h/g at 5 A/g | 7000 | [ |
HPCO | 290 mA·h/g at 0.1 A/g | 88.60 | 130 mA·h/g at 30 A/g | ca. 190 mA·h/g at 1 A/g | 1000 | [ |
CC700 | 320.6 mA·h/g at 0.05 A/g | 48.01 | 120.6 mA·h/g at 1 A/g | 105 mA·h/g at 1A/g | 8000 | [ |
3DHPCMs⁃800 | 287.5 mA·h/g at 0.1 A/g | 41.90 | 112.5 mA·h/g at 5 A/g | 313.8 mA·h/g at 0.1 A/g | 100 | [ |
NNSC | 311 mA·h/g at 0.1 A/g | 20.5 | 61 mA·h/g at 5 A/g | ca. 105 mA·h/g at 1 A/g | 9000 | [ |
CNT/SNCF | 370.8 mA·h/g at 0.1 A/g | 49.10 | 109.3 mA·h/g at 10 A/g | 150.4 mA·h/g at 5 A/g | 1000 | [ |
SN⁃HCS | 250 mA·h/g at 0.1 A/g | — | 110 mA·h/g at 10 A/g | 169 mA·h/g at 0.5 A/g | 2000 | [ |
N/S/P⁃HCMT | 302 mA·h/g at 0.1 A/g | 70 | 201mA·h/g at 1 A/g | 301 mA·h/g at 0.1 A/g | 100 | [ |
1 | Chu S., Majumdar A., Nature, 2012, 488(7411), 294—303 |
2 | Yang Z., Zhang J., Kintner⁃Meyer M. C., Lu X., Choi D., Lemmon J. P., Liu J., Chem. Rev., 2011, 111(5), 3577—3613 |
3 | Yan Z., Zhao L., Wang Y., Zhu Z., Chou S., Adv. Funct. Mater., 2022, 2205622 |
4 | Dunn B., Kamath H., Tarascon J. M., Science, 2011, 334(6058), 928—935 |
5 | Palomares V., Serras P., Villaluenga I., Hueso K. B., Carretero⁃González J., Rojo T., Energy Environ. Sci., 2012, 5(3), 5884—5901 |
6 | Larcher D., Tarascon J. M., Nat. Commun., 2015, 7(1), 19—29 |
7 | Lamb J., Manthiram A., ACS Appl. Mater. Interfaces, 2022, 14(25), 28865—28872 |
8 | Yabuuchi N., Kubota K., Dahbi M., Komaba S., Chem. Rev., 2014, 114(23), 11636—11682 |
9 | Walter M., Kovalenko M. V., Kravchyk K. V., New J. Chem., 2020, 44(5), 1677—1683 |
10 | Alvira D., Antorán D., Manyà J. J., Chem. Eng. J., 2022, 447, 137468 |
11 | Xu Y., Gao J., Tao X., Sun Y., Liu Y., Cao A., Wan L., ACS Appl. Mater. Interfaces, 2020, 12(13), 15313—15319 |
12 | Hu H., Zhu Y., Xiao Y., Li S., Li J., Hao Z., Zhao J., Chou S., Adv. Energy Mater., 2022, 12(32), 2201511 |
13 | Xiao Y., Wang H., Hu H., Zhu Y., Li S., Li J., Wu X., Chou S., Adv. Mater., 2022, 34(33), 2202695 |
14 | Zhu Y., Xiao Y., Dou S., Kang Y., Chou S., eScience, 2021, 1(1), 13—27 |
15 | Ni Q., Bai Y., Wu F., Wu C., Adv. Sci., 2017, 4(3), 1600275 |
16 | Liu X., Tang L., Xu Q., Liu H., Wang Y., Electrochim. Acta, 2019, 296, 345—354 |
17 | Liu X., Lai W., Peng J., Gao Y., Zhang H., Yang Z., He X., Hu Z., Li L., Qiao Y., Wu M., Liu H., Carbon Neutralization, 2022, 1(1), 49—58 |
18 | Wang W., Gang Y., Hu Z., Yan Z., Li W., Li Y., Gu Q. F., Wang Z., Chou S., Liu H., Dou S., Nat. Commun., 2020, 11(1), 980 |
19 | Wang W., Gang Y., Peng J., Hu Z., Yan Z., Lai W., Zhu Y., Appadoo D., Ye M., Cao Y., Gu Q., Liu H., Dou S., Chou S., Adv. Funct. Mater., 2022, 32(25), 2111727 |
20 | Xu L., Li H., Du T., Xue Q., Gao Y., Yu Z., Bai H., Battery Energy, 2022, 1(2), 20210003 |
21 | Liu X., Peng J., Lai W., Gao Y., Zhang H., Li L., Qiao Y., Chou S., Adv. Funct. Mater., 2022, 32(7), 2108616 |
22 | Liu Y., Merinov B. V., Goddard W. A., Proc. Natl. Acad. Sci., 2016, 113(14), 3735—3739 |
23 | Li Y., Lu Y., Adelhelm P., Titirici M. M., Hu Y., Chem. Soc. Rev., 2019, 48(17), 4655—4687 |
24 | He X., Zhao J., Lai W., Li R., Yang Z., Xu C., Dai Y., Gao Y., Liu X., Li L., Xu G., Qiao Y., Chou S., Wu M., ACS Appl. Mater. Interfaces, 2021, 13(37), 44358—44368 |
25 | Yuan B., Zeng L., Sun X., Yu Y., Wang Q., Nano Res., 2018, 11(4), 2256—2264 |
26 | Yan R., Josef E., Huang H., Leus K., Niederberger M., Hofmann J.P., Walczak R., Antonietti M., Oschatz M., Adv. Funct. Mater., 2019, 29(26), 1902858 |
27 | Zhu Z., Zhong W., Zhang Y., Dong P., Sun S., Zhang Y., Li X., Carbon Energy, 2021, 3(4), 541—553 |
28 | Chen X., Liu C., Fang Y., Ai X., Zhong F., Yang H., Cao Y., Carbon Energy, 2022, doi: 10.1002/cey2.196 |
29 | Wang J., Liu X., Mao S., Huang J., Nano Lett., 2012, 12(11), 5897—5902 |
30 | Darwiche A., Marino C., Sougrati M. T., Fraisse B., Stievano L., Monconduit L., J. Am. Chem. Soc., 2012, 134(51), 20805—20811 |
31 | Zhao L., Hu Z., Lai W., Tao Y., Peng J., Miao Z., Wang Y., Chou S., Liu H., Dou S., Adv. Energy Mater., 2020, 11(1), 2002704 |
32 | Dou X., Hasa I., Saurel D., Vaalma C., Wu L., Buchholz D., Bresser D., Komaba S., Passerini S., Mater. Today, 2019, 23, 87—104 |
33 | Tao F., Liu Y., Ren X., Jiang A., Wei H., Zhai X., Wang F., Stock H. R., Wen S., Ren F., J. Alloys Compd., 2021, 873, 159742 |
34 | Chu Z., Yue C., Solid State Ionics, 2016, 287, 36—41 |
35 | Luo J., Sun Y., Guo S., Xu Y., Chang B., Liu C., Cao A., Wan L., Mater. Chem. Front., 2020, 4(8), 2283—2306 |
36 | Liu T., Zhang L., Cheng B., Yu J., Adv. Energy Mater., 2019, 9(17), 1803900 |
37 | Caruso F., Caruso R. A., Mohwald H., Science, 1998, 282(5391), 1111—1114 |
38 | Gil⁃Herrera L. K., Blanco A., Juarez B. H., Lopez C., Small, 2016, 12(32), 4357—4362 |
39 | Han J., Xu G., Ding B., Pan J., Dou H., MacFarlane D. R., J. Mater. Chem. A, 2014, 2(15), 5352—5357 |
40 | Liu H., Lei W., Tong Z., Guan K., Jia Q., Zhang S., Zhang H., ACS Appl. Mater. Interfaces, 2021, 13(21), 24604—24614 |
41 | Yoon S. B., Sohn K., Kim J. Y., Shin C. H., Yu J. S., Hyeon T., Adv. Mater., 2002, 14(1), 19—21 |
42 | Guan B., Yu L., Lou X., Adv. Mater., 2016, 28(43), 9596—9601 |
43 | Stober W., Fink A., J. Colloid Interface Sci., 1968, 26, 62—69 |
44 | Carcouet C. C., van de Put M. W., Mezari B., Magusin P. C., Laven J., Bomans P. H., Friedrich H., Esteves A. C., Sommerdijk N. A., van Benthem R. A., de With G., Nano Lett., 2014, 14(3), 1433—1438 |
45 | Ahmed A., Ritchie H., Myers P., Zhang H., Adv. Mater., 2012, 24(45), 6042—6048 |
46 | Noonan O., Zhang H., Song H., Xu C., Huang X., Yu C., J. Mater. Chem. A, 2016, 4(23), 9063—9071 |
47 | Bu L., Kuai X., Zhu W., Huang X., Tian K., Lu H., Zhao J., Gao L., Electrochim. Acta, 2020, 356, 136804 |
48 | Lu A., Sun T., Li W., Sun Q., Han F., Liu D., Guo Y., Angew. Chem. Int. Ed., 2011, 50(49), 11765—11768 |
49 | He X., Sun H., Zhu M., Yaseen M., Liao D., Cui X., Guan H., Tong Z., Zhao Z., Chem. Commun, 2017, 53(24), 3442—3445 |
50 | Liu J., Shao M., Tang Q., Chen X., Liu Z., Qian Y., Carbon, 2003, 41(8), 1682—1685 |
51 | Bai Z., Zhang Y., Fan N., Guo C., Tang B., Mater. Lett., 2014, 119, 16—19 |
52 | Ding K., Gao B., Fu J., An W., Song H., Li X., Yuan Q., Zhang X., Huo K., Chu P. K., ChemElectroChem, 2017, 4(10), 2542—2546 |
53 | Jiang J., Nie G., Nie P., Li Z., Pan Z., Kou Z., Dou H., Zhang X., Wang J., Nano⁃Micro Lett., 2020, 12(1), 183 |
54 | Wang X., Feng J., Bai Y., Zhang Q., Yin Y., Chem. Rev., 2016, 116(18), 10983—11060 |
55 | Wu J., Jin C., Yang Z., Tian J., Yang R., Carbon, 2015, 82, 562—571 |
56 | Chen C., Wang H., Han C., Deng J., Wang J., Li M., Tang M., Jin H., Wang Y., J. Am. Chem. Soc., 2017, 139(7), 2657—2663 |
57 | Liu X., Song P., Hou J., Wang B., Xu F., Zhang X., ACS Sustain. Chem. Eng., 2018, 6(2), 2797—2805 |
58 | Zhang T., Liu P., Zhong Y., Zheng J., Deng K., Lv X., Ji J., Carbon, 2022, 198, 91—100 |
59 | Peng L., Hung C., Wang S., Zhang X., Zhu X., Zhao Z., Wang C., Tang Y., Li W., Zhao D., J. Am. Chem. Soc., 2019, 141(17), 7073—7080 |
60 | Yang X., Lu P., Yu L., Pan P., Elzatahry A. A., Alghamdi A., Luo W., Cheng X., Deng Y., Adv. Funct. Mater., 2020, 30(36), 2002488 |
61 | Guan B., Yu L., Lou X., J. Am. Chem. Soc., 2016, 138(35), 11306—11311 |
62 | Zhang P., Lou X., Adv. Mater., 2019, 31(29), 1900281 |
63 | Xue D., Zhu D., Duan H., Wang Z., Lv Y., Xiong W., Li L., Liu M., Gan L., Chem. Commun., 2019, 55(75), 11219—11222 |
64 | Natarajan S., Bajaj H. C., Aravindan V., J. Mater. Chem. A, 2019, 7(7), 3244—3252 |
65 | Wang S., Sun W., Yang D., Yang F., Mater. Today Energy, 2019, 13, 50—55 |
66 | Han F., Bai Y., Liu R., Yao B., Qi Y., Lun N., Zhang J., Adv. Energy Mater., 2011, 1(5), 798—801 |
67 | Begum H., Ahmed M. S., Jung S., J. Mater. Chem. A, 2021, 9(15), 9644—9654 |
68 | Sun H., Zhu Y., Yang B., Wang Y., Wu Y., Du J., J. Mater. Chem. A, 2016, 4(31), 12088—12097 |
69 | Jiang J. Yuan J., Nie P., Zhu Q., Chen C., He W., Zhang T., Dou H., Zhang X., J. Mater. Chem. A, 2020, 8, 3956—3966 |
70 | Ahn S. H., Manthiram A., Small, 2017, 13(11), 1603437 |
71 | Lijima S., Nature, 1991, 354(7), 56—58 |
72 | Matsushita T., Ishii Y., Kawasaki S., Mater. Express, 2013, 3(1), 30—36 |
73 | Goonetilleke D., Pramudita J. C., Choucair M., Rawal A., Sharma N., J. Power Sources, 2016, 314, 102—108 |
74 | Cao Y., Xiao L., Sushko M. L., Wang W., Schwenzer B., Xiao J., Nie Z., Saraf L. V., Yang Z., Liu J., Nano Lett., 2012, 12(7), 3783—3787 |
75 | Liu Y., Fan F., Wang J., Liu Y., Chen H., Jungjohann K. L., Xu Y., Zhu Y., Bigio D., Zhu T., Wang C., Nano Lett., 2014, 14(6), 3445—3452 |
76 | Han H., Chen X., Qian J., Zhong F., Feng X., Chen W., Ai X., Yang H., Cao Y., Nanoscale, 2019, 11(45), 21999—22005 |
77 | Yang S., Feng X., Zhi L., Cao Q., Maier J., Müllen K., Adv. Mater., 2010, 22(7), 838—842 |
78 | Xie F., Niu Y., Zhang Q., Guo Z., Hu Z., Zhou Q., Xu Z., Li Y., Yan R., Lu Y., Titirici M. M., Hu Y., Angew. Chem. Int. Ed., 2022, 134(11), e202116394 |
79 | Tang K., Fu L., White R. J., Yu L., Titirici M. M., Antonietti M., Maier J., Adv. Energy Mater., 2012, 2(7), 873—877 |
80 | Lyu T., Liang L., Shen P., J. Colloid Interface Sci., 2021, 604, 168—177 |
81 | Bin D., Li Y., Sun Y., Duan S., Lu Y., Ma J., Cao A., Hu Y., Wan L., Adv. Energy Mater., 2018, 8(26), 1800855 |
82 | Wu Q., Yang L., Wang X., Hu Z., Adv. Mater., 2020, 32(27), 1904177 |
83 | Wang J., Luo X., Young C., Kim J., Kaneti Y., You J., Kang Y., Yamauchi Y., Wu K., Chem. Mater., 2018, 30(13), 4401—4408 |
84 | Lyu T., Wang R., Liang L., Chen J., Hasan S., Lyu D., Tian Z., Shen P., J. Electroanal. Chem., 2020, 871, 114310 |
85 | Zhang Z., Huang Y., Li X., Zhang S., Jia Q., Li T., Chem. Eng. J., 2021, 421, 129827 |
86 | Jackson C., Smith G. T., Inwood D. W., Leach A. S., Whalley P. S., Callisti M., Polcar T., Russell A. E., Levecque P., Kramer D., Nat. Commun., 2017, 8, 15802 |
87 | Wu X., Chen X., Li X., Yan Y., Huang J., Li J., Shen R., Tian H., Yang D., Zhang H., J. Mater. Chem. A, 2021, 9(39), 22653—22659 |
88 | Ni D., Sun W., Wang Z., Bai Y., Lei H., Lai X., Sun K., Adv. Energy Mater., 2019, 1900026 |
89 | Seredych M., Rodríguez⁃Catellón E., Biggs M., Skinner W., Bandosz T., Cabron, 2014, 78, 540—558 |
90 | Chen Z., Zhu D., Li J., Liang D., Liu M., Hu Z., Li X., Feng Z., Huang J., Ionics, 2019, 25(9), 4517—4522 |
91 | Huang G., Kong Q., Jiang J., Yao W., Wang Q., ChemSusChem, 2022, e202201310 |
92 | Xu D., Chen C., Xie J., Zhang B., Miao L., Cai J., Huang Y., Zhang L., Adv. Energy Mater., 2016, 6(6), 1501929 |
93 | Su F., Poh C. K., Chen J., Xu G., Wang D., Li Q., Lin J., Lou X., Energy Environ. Sci., 2011, 4(3), 717—724 |
94 | Wang X., Weng Q., Liu X., Wang X., Tang D., Tian W., Zhang C., Yi W., Liu D., Bando Y., Golberg D., Nano Lett., 2014, 14(3), 1164—1171 |
95 | Cao Y., Mao S., Li M., Chen Y., Wang Y., ACS Catal., 2017, 7(12), 8090—8112 |
96 | Wen Y., Wang B., Luo B., Wang L., Eur. J. Inorg. Chem., 2016, (13/14), 2051—2055 |
97 | Qu Y., Zhang Z., Du K., Chen W., Lai Y., Liu Y., Li J., Carbon, 2016, 105, 103—112 |
98 | Bandosz T. J., Ren T., Carbon, 2017, 118, 561—577 |
99 | Sun X., Wang C., Gong Y., Gu L., Chen Q., Yu Y., Small, 2018, 14(35), 1802218 |
100 | Liu L., Li Q., Wang Z., Chen Y., Mater. Technol., 2018, 33(11), 748—753 |
101 | Wang X., Hou M., Shi Z., Liu X., Mizota I., Lou H., Wang B., Hou X., ACS Appl. Mater. Interfaces, 2021, 13(10), 12059—12068 |
102 | Jin H., Lu H., Wu W., Chen S., Liu T., Bi X., Xie W., Chen X., Yang K., Li J., Liu A., Lei Y., Wang J., Wang S., Lu J., Nano Energy, 2020, 70, 104569 |
103 | Zhong W., Chen Q., Yang F., Liu W., Li G., Xie K., Ren M., J. Electroanal. Chem., 2019, 850, 113392 |
104 | Lu H., Zhang X., Wan F., Liu D., Fan C., Xu H., Wang G., Wu X., ACS Appl. Mater. Interfaces, 2017, 9(14), 12518—12527 |
105 | Wang L., Lu B., Wang S., Cheng W., Zhao Y., Zhang J., Sun X., J. Mater. Chem. A, 2019, 7(18), 11117—11126 |
106 | Wang S., Xia L., Yu L., Zhang L., Wang H., Lou X., Adv. Energy Mater., 2016, 6(7), 1502217 |
107 | Zhou K., Qiu R., Zhen Y., Huang Z., Mathur S., Hong Z., Small, 2021, 17(25), 2100538 |
108 | Hao R., Yang Y., Wang H., Jia B., Ma G., Yu D., Guo L., Yang S., Nano Energy, 2018, 45, 220—228 |
109 | Zou G., Hou H., Cao X., Ge P., Zhao G., Yin D., Ji X., J. Mater. Chem. A, 2017, 5(45), 23550—23558 |
110 | Zhang W., Lan C., Xie X., Cao Q., Zheng M., Dong H., Hu H., Xiao Y., Liu Y., Liang Y., J. Colloid Interface Sci., 2019, 546, 53—59 |
111 | Chen D., Huang Z., Sun S., Zhang H., Wang W., Yu G., Chen J., ACS Appl. Mater. Interfaces, 2021, 13(37), 44369—44378 |
112 | Ye J., Zang J., Tian Z., Zheng M., Dong Q., J. Mater. Chem. A, 2016, 4(34), 13223—13227 |
113 | Yang D., Li S., Cheng D., Miao L., Zhong W., Yang X., Li Z., Energy & Fuels, 2021, 35(3), 2795—2804 |
[1] | HU Shiying, SHEN Jiayan, HAN Junshan, HAO Tingting, LI Xing. Preparation of CoO Nanoparticles/Hollow Graphene Nanofiber Composites and Its Electrochemical Performances [J]. Chem. J. Chinese Universities, 2023, 44(2): 20220462. |
[2] | JIA Yanggang, SHAO Xia, CHENG Jie, WANG Pengpeng, MAO Aiqin. Preparation and Lithium Storage Performance of Pseudocapacitance-controlled Perovskite High-entropy Oxide La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3 Anode Materials [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220157. |
[3] | WU Zhuoyan, LI Zhi, ZHAO Xudong, WANG Qian, CHEN Shunpeng, CHANG Xinghua, LIU Zhiliang. A Highly Efficient One-step Preparation Method of Nano-silicon and Carbon Composite for High-performance Lithium Ion Batteries [J]. Chem. J. Chinese Universities, 2021, 42(8): 2500. |
[4] | TIAN Runsai, LU Qian, ZHANG Hongbin, ZHANG Bo, FENG Yuanyuan, WEI Jinxiang, FENG Jijun. Design and Construction of N-Doping Carbon in⁃situ Coated Cu2O/Co3O4@C Heterostructured Composite Material for Highly Efficient Lithium-ion Storage [J]. Chem. J. Chinese Universities, 2021, 42(8): 2592. |
[5] | LIU Zhigang, LI Jiabao, YANG Jian, MA Hao, WANG Chengyin, GUO Xin, WANG Guoxiu. Preparation of a Novel g-C3N4/Sn/N-doped Carbon Composite for Sodium Storage [J]. Chem. J. Chinese Universities, 2021, 42(2): 633. |
[6] | HAN Muyao, ZHAO Lina, SUN Jie. Advances in Silicon and Silicon-based Anode Materials [J]. Chem. J. Chinese Universities, 2021, 42(12): 3547. |
[7] | YE Yihua, BA Deliang, LIU Shuailei, CHEN Yinglin, LI Yuanyuan, LIU Jinping. Recent Progress on High⁃rate Niobium-based Oxides Anode Materials [J]. Chem. J. Chinese Universities, 2021, 42(10): 3005. |
[8] | RONG Hua, WANG Chungang, ZHOU Ming. Synthesis and Electrochemical Performance of FeS2 Microspheres as an Anode for Li-ion Batteries [J]. Chem. J. Chinese Universities, 2020, 41(3): 447. |
[9] | FANG Liang,DING Xiaoli,SONG Yun,LIU Dongming,LI Yongtao,ZHANG Qingan. Effect of Morphological Tuning on Electrochemical Performance of Perovskite LaCoO3 Anodes† [J]. Chem. J. Chinese Universities, 2019, 40(7): 1456. |
[10] | LIN Weiguo,SUN Weihang,QU Zongkai,FENG Xiaolei,RONG Junfeng,CHEN Xu,YANG Wensheng. Preparation and Performance of Nano-porous Si/Graphite/C Composite Microspheres as Anode Material for Li-ion Batteries† [J]. Chem. J. Chinese Universities, 2019, 40(6): 1216. |
[11] | WANG Qiuxian,LI Kai,YANG Beining,YUE Hongyun,YANG Shuting. Sodium Alginate Directed Synthesis of ZnFe2O4 with Micro-nano Structure and Its Performance in Lithium Ion Batteries† [J]. Chem. J. Chinese Universities, 2018, 39(9): 2039. |
[12] | HUANG Jipei,LI Yi,YANG Shenhui,ZHOU Yazhou,CHENG Xiaonong,ZHU Jia,YANG Juan. Synthesis of Three-dimensional Pt-Ag Aerogels and Their Electrocatalytic Performance Toward Oxygen Reduction Reaction† [J]. Chem. J. Chinese Universities, 2018, 39(5): 1063. |
[13] | LI Changqing,YANG Dongjie,XI Yuebin,QIN Yanlin,QIU Xueqing. Synthesis and Electrochemical Performance of Silica/Porous Lignin Carbon Composites as Anode Materials for Lithium-ion Batteries† [J]. Chem. J. Chinese Universities, 2018, 39(12): 2725. |
[14] | XU Xiaomu, ZHANG Xingshuai, CHEN Zhining, WANG Jing, GUO Yuzhong, HUANG Ruian, WANG Jianhua. Preparation of a Disordered Mesoporous Silicon Nanocomposite and Its Slow Activation Behavior† [J]. Chem. J. Chinese Universities, 2017, 38(5): 713. |
[15] | SHI Nannan, JIANG Xue, ZHANG Ying, CHENG Kui, YE Ke, WANG Guiling, CAO Dianxue. Preparation and Performance of N-doped Carbon Coated Li4Ti5O12 as Anode Material for Lithium-ion Batteries† [J]. Chem. J. Chinese Universities, 2015, 36(5): 981. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||