Chem. J. Chinese Universities ›› 2023, Vol. 44 ›› Issue (7): 20220752.doi: 10.7503/cjcu20220752
• Review • Previous Articles Next Articles
REN Yi1, KAN Yuanyuan2, SUN Yanna2(), LI Jianfeng1(
), GAO Ke2(
)
Received:
2022-12-09
Online:
2023-07-10
Published:
2023-01-15
Contact:
SUN Yanna, LI Jianfeng, GAO Ke
E-mail:ynsun@sdu.edu.cn;ljfpyc@163.com;kegao@sdu.edu.cn
Supported by:
CLC Number:
TrendMD:
REN Yi, KAN Yuanyuan, SUN Yanna, LI Jianfeng, GAO Ke. Research Progress of Graphdiyne-based Materials in Photovoltaic Applications[J]. Chem. J. Chinese Universities, 2023, 44(7): 20220752.
Material | Conductivity/(S·m-1) | Band gap/eV | Interlayer spacing/nm | Electron mobility/(cm2·V-1·s-1) | Ref. |
---|---|---|---|---|---|
GDY | 2.52×10-4 | 0.44—1.47 | 0.405 | 10-5 | [ |
GDYO | 6.26×10-5 | 0.376 | [ | ||
Cl⁃GDY | 1.97×10-3 | 0.376 | 9.378×10-4 | [ | |
HsGDY | 1.02×10-3 | 0.75 | 0.419 | [ | |
F⁃GDY | 9.66×10-4 | 2.15 | 0.373 | [ | |
Tra⁃GD | 1.1×10-3 | 1.76 | 0.377 | [ |
Table 1 Performance for different graphdiyne
Material | Conductivity/(S·m-1) | Band gap/eV | Interlayer spacing/nm | Electron mobility/(cm2·V-1·s-1) | Ref. |
---|---|---|---|---|---|
GDY | 2.52×10-4 | 0.44—1.47 | 0.405 | 10-5 | [ |
GDYO | 6.26×10-5 | 0.376 | [ | ||
Cl⁃GDY | 1.97×10-3 | 0.376 | 9.378×10-4 | [ | |
HsGDY | 1.02×10-3 | 0.75 | 0.419 | [ | |
F⁃GDY | 9.66×10-4 | 2.15 | 0.373 | [ | |
Tra⁃GD | 1.1×10-3 | 1.76 | 0.377 | [ |
Material | Strategy | Pre⁃optimized PCE | Optimized PCE | Ref. |
---|---|---|---|---|
GCl | Solid additive | 15.61% | 17.32% | [ |
GOMe | Solid additive | 15.15% | 17.18% | [ |
GDYO | Modified hole transport material | 15.7% | 17.5% | [ |
Table 2 Graphdiyne-based materials in OSCs
Material | Strategy | Pre⁃optimized PCE | Optimized PCE | Ref. |
---|---|---|---|---|
GCl | Solid additive | 15.61% | 17.32% | [ |
GOMe | Solid additive | 15.15% | 17.18% | [ |
GDYO | Modified hole transport material | 15.7% | 17.5% | [ |
Material | Modified part | Pre⁃optimized PCE | Optimized PCE | Ref. |
---|---|---|---|---|
GDY | MAPbI3 | 16.69% | 21.01% | [ |
GDY | FA0.85MA0.15Pb(I0.85Br0.15)3 | 20.06% | 20.55% | [ |
GDY | TiO2 + MAPbI3 + Spiro⁃OMeTAD | 17.17% | 19.89% | [ |
GDY | CH3NH3PbI3 | 16.7% | 18.5% | [ |
N⁃GDY | CH3NH3PbI3 | 19.64% | 22.38% | [ |
GDY | P3HT | 11.11% | 13.17% | [ |
GDY | P3CT⁃K | 16.80% | 19.50% | [ |
GDYO | NiO x | 16.31% | 18.16% | [ |
GDY | Spiro⁃OMeTAD | 19.94% | 22.17% | [ |
GDY | PCBM | 13.6% | 14.8% | [ |
GDY | PCBSD | 17.38% | 20.19% | [ |
GDY | PCBM + ZnO | 16.59% | 20.00% | [ |
GDY | SnO2 | 18.79% | 20.74% | [ |
GDY⁃Tz⁃CH2(CH2)16CH3 | PCBM | 16.24% | 19.26% | [ |
Table 3 Graphdiyne-based materials in PSCs
Material | Modified part | Pre⁃optimized PCE | Optimized PCE | Ref. |
---|---|---|---|---|
GDY | MAPbI3 | 16.69% | 21.01% | [ |
GDY | FA0.85MA0.15Pb(I0.85Br0.15)3 | 20.06% | 20.55% | [ |
GDY | TiO2 + MAPbI3 + Spiro⁃OMeTAD | 17.17% | 19.89% | [ |
GDY | CH3NH3PbI3 | 16.7% | 18.5% | [ |
N⁃GDY | CH3NH3PbI3 | 19.64% | 22.38% | [ |
GDY | P3HT | 11.11% | 13.17% | [ |
GDY | P3CT⁃K | 16.80% | 19.50% | [ |
GDYO | NiO x | 16.31% | 18.16% | [ |
GDY | Spiro⁃OMeTAD | 19.94% | 22.17% | [ |
GDY | PCBM | 13.6% | 14.8% | [ |
GDY | PCBSD | 17.38% | 20.19% | [ |
GDY | PCBM + ZnO | 16.59% | 20.00% | [ |
GDY | SnO2 | 18.79% | 20.74% | [ |
GDY⁃Tz⁃CH2(CH2)16CH3 | PCBM | 16.24% | 19.26% | [ |
1 | Yahya M., Bouziani A., Ocak C., Seferoğlu Z., Sillanpää M., Dyes Pigm., 2021, 192, 109227 |
2 | Ma X. Q., Process. Chem., 2022, 34(5), 1042 |
马晓清. 化学进展, 2022, 34(5), 1042 | |
3 | Zeng L., Wang L., Qin J., Ren Y., Li H., Lu X., Lu F., Tong J., Li J., Opt. Mater., 2023, 136, 113404 |
4 | Liu J., Liu X., Chen C., Wang Q., Li H., Ren Y., Shen H., Lu X., Yang C., Tong J., Li J., Opt. Mater., 2023, 135, 113288 |
5 | Tang J., Liu H., Zhitomirsky D., Hoogland S., Wang X., Furukawa M., Levina L., Sargent E. H., Nano Lett., 2012, 12(9), 4889—4894 |
6 | Xue R., Zhang J., Li Y., Li Y., Small, 2018, 14(41), 1801793 |
7 | Wu T., Qin Z., Wang Y., Wu Y., Chen W., Zhang S., Cai M., Dai S., Zhang J., Liu J., Zhou Z., Liu X., Segawa H., Tan H., Tang Q., Fang J., Li Y., Ding L., Ning Z., Qi L., Zhang Y., Han L., Nano⁃Micro Lett., 2021, 13(1), 1—18 |
8 | Lee C. P., Li C. T., Ho K. C., Mater. Today, 2017, 20(5), 267—283 |
9 | Yang M., Wei W., Zhou X., Wang Z., Duan C., Energy Mater., 2021, 1(1), 100008 |
10 | Zhang Y., Duan C., Ding L., Sci. Bull., 2020, 65(24), 2040—2042 |
11 | Bai Y., Huang Z., Zhang X., Lu J., Niu X., He Z., Zhu C., Xiao M., Song Q., Wei X., Science, 2022, 378(6621), 747—754 |
12 | Zhu L., Zhang M., Xu J., Li C., Yan J., Zhou G., Zhong W., Hao T., Song J., Xue X., Nat. Mater., 2022, 21(6), 656—663 |
13 | Ding Y., Mo L. E., Tao L., Ma Y. M., Hu L. H., Huang Y., Fang X. Q., Yao J. X., Xi X. W., Dai S. Y., J. Power Sources, 2014, 272, 1046—1052 |
14 | Neo D. C. J., Cheng C., Stranks S. D., Fairclough S. M., Kim J. S., Kirkland A. I., Smith J. M., Snaith H. J., Assender H. E., Watt A. A. R., Chem. Mater., 2014, 26(13), 4004—4013 |
15 | Kwon S., Kang H., Lee J. H., Lee J., Hong S., Kim H., Lee K., Adv. Energy Mater., 2017, 7(10), 1601496 |
16 | Feng Y. Q., Cui H., Yan G. J., Zhang B., Fine Chem., 2022, 39(9), 1739—1746 |
冯亚青, 崔宏, 严桂俊, 张宝. 精细化工, 2022, 39(9), 1739—1746 | |
17 | Liu Y., Gao Y., He F., Xue Y., Li Y., CCS Chem., 2022, doi: 10.31635/ccschem.022.202202005 |
18 | Huang C., Li Y., Wang N., Xue Y., Zuo Z., Liu H., Li Y., Chem. Rev., 2018, 118(16), 7744—7803 |
19 | Fang Y., Liu Y., Qi L., Xue Y., Li Y., Chem. Soc. Rev., 2022, 51, 2681—2709 |
20 | Li G., Li Y., Liu H., Guo Y., Li Y., Zhu D., Chem. Commun., 2010, 46(19), 3256—3258 |
21 | An J., Zhang H., Qi L., Li G., Li Y., Angew. Chem. Int. Ed., 2022, 61(7), e202113313 |
22 | Zhang C., Li Y., Chem. Res. Chinese Universities, 2021, 37(6), 1149—1157 |
23 | Zheng Z., He F., Xue Y., Li Y., Chem. Res. Chinese Universities, 2022, 38(1), 92—98 |
24 | Hui L., Xue Y., Yu H., Liu Y., Fang Y., Xing C., Huang B., Li Y., J. Am. Chem. Soc., 2019, 141(27), 10677—10683 |
25 | Xue Y., Huang B., Yi Y., Guo Y., Zuo Z., Li Y., Jia Z., Liu H., Li Y., Nat. Commun., 2018, 9(1), 1—10 |
26 | Yu H., Xue Y., Hui L., Zhang C., Fang Y., Liu Y., Chen X., Zhang D., Huang B., Li Y., Natl. Sci. Rev., 2021, 8(8), 213 |
27 | Zhang D., Xue Y., Zheng X., Zhang C., Li Y., Natl. Sci. Rev., 2023, 10, nwac209 |
28 | Hui L., Zhang X., Xue Y., Chen X., Fang Y., Xing C., Liu Y., Zheng X., Du Y., Zhang C., He F., Li Y., J. Am. Chem. Soc., 2022, 144(4), 1921—1928 |
29 | Wang R., Zhang H., Liu Q., Liu F., Han X., Liu X., Li K., Xiao G., Albert J., Lu X., Guo T., Nat. Commun., 2022, 13(1), 1—11 |
30 | Gao Y., Xue Y., He F., Li Y., Proc. Natl. Acad. Sci., 2022, 119(36), e2206946119 |
31 | He F., Li Y., CCS Chem., 2022, doi: 10.31635/ccschem.022.202202328 |
32 | Zheng X., Xue Y., Zhang C., Li Y., CCS Chem., 2022, doi: 10.31635/ccschem.022.202202189 |
33 | Zhao J. L., Huang C. D., J. Funct. Mater., 2022, 53(8), 8045—8053 |
赵金良, 黄成德. 功能材料, 2022, 53(8), 8045—8053 | |
34 | Wang N., He J., Wang K., Zhao Y., Jiu T., Huang C., Li Y., Adv. Mater., 2019, 31(42), 1803202 |
35 | Gao Y., Xue Y., Qi L., Xing C., Zheng X., He F., Li Y., Nat. Commun., 2022, 13(1), 1—11 |
36 | Zhao Y., Yang N., Yu R., Zhang Y., Zhang J., Li Y., Wang D., EnergyChem, 2020, 2(5), 100041 |
37 | Zhu M., Dong Y., Xu J., Zhang B., Feng Y., J. Mater. Sci., 2019, 54(6), 4893—4904 |
38 | Zhang X., Wang Q., Jin Z., Chen Y., Liu H., Wang J., Li Y., Liu S., Adv. Mater. Interfaces, 2018, 5(2), 1701117 |
39 | Xiao J., Shi J., Liu H., Xu Y., Lv S., Luo Y., Li D., Meng Q., Li Y., Adv. Energy Mater., 2015, 5(8), 1401943 |
40 | Qiu L., He S., Ono L. K., Qi Y., Adv. Energy Mater., 2020, 10(13), 1902726 |
41 | Luo Z., Liu T., Yan H., Zou Y., Yang C., Adv. Funct. Mater., 2020, 30(46), 2004477 |
42 | Cheng P., Zhan X., Chem. Soc. Rev., 2016, 45(9), 2544—2582 |
43 | Liu L., Kan Y., Gao K., Wang J., Zhao M., Chen H., Zhao C., Jiu T., Jen A. K. Y., Li Y., Adv. Mater., 2020, 32(11), 1907604 |
44 | Sun Y., Nian L., Kan Y., Ren Y., Chen Z., Zhu L., Zhang M., Yin H., Xu H., Li J., Joule, 2022, 6(12), 2835—2848 |
45 | Jin Z., Yuan M., Li H., Yang H., Zhou Q., Liu H., Lan X., Liu M., Wang J., Sargent E. H., Li Y., Adv. Funct. Mater., 2016, 26(29), 5284—5289 |
46 | Li Y., Xu L., Liu H., Li Y., Chem. Soc. Rev., 2014, 43(8), 2572—2586 |
47 | Wu L., Dong Y., Zhao J., Ma D., Huang W., Zhang Y., Wang Y., Jiang X., Xiang Y., Li J., Feng Y., Xu J., Zhang H., Adv. Mater., 2019, 31(14), 1807981 |
48 | Yan H., Guo S., Wu F., Yu P., Liu H., Li Y., Mao L., Angew. Chem. Int. Ed., 2018, 57(15), 3922—3926 |
49 | Liu R., Gao X., Zhou J., Xu H., Li Z., Zhang S., Xie Z., Zhang J., Liu Z., Adv. Mater., 2017, 29(18), 1604665 |
50 | Matsuoka R., Sakamoto R., Hoshiko K., Sasaki S., Masunaga H., Nagashio K., Nishihara H., J. Am. Chem. Soc., 2017, 139(8), 3145—3152 |
51 | Zhou W., Shen H., Zeng Y., Yi Y., Zuo Z., Li Y., Li Y., Angew. Chem. Int. Ed., 2020, 59(12), 4908—4913 |
52 | He J., Wang N., Yang Z., Shen X., Wang K., Huang C., Yi Y., Tu Z., Li Y., Energy Environ. Sci., 2018, 11(10), 2893—2903 |
53 | He J., Wang N., Cui Z., Du H., Fu L., Huang C., Yang Z., Shen X., Yi Y., Tu Z., Li Y., Nat. Commun., 2017, 8(1), 1—11 |
54 | Wang N., He J., Tu Z., Yang Z., Zhao F., Li X., Huang C., Wang K., Jiu T., Yi Y., Angew. Chem., 2017, 129(36), 10880—10885 |
55 | Xue Y., Guo Y., Yi Y., Li Y., Liu H., Li D., Yang W., Li Y., Nano Energy, 2016, 30, 858—866 |
56 | Zhang S., Du H., He J., Huang C., Liu H., Cui G., Li Y., ACS Appl. Mater. Interfaces, 2016, 8(13), 8467—8473 |
57 | Gao X., Zhu Y., Yi D., Zhou J., Zhang S., Yin C., Ding F., Zhang S., Yi X., Wang J., Tong L., Han Y., Liu Z., Zhang J., Sci. Adv., 2018, 4(7), 6378 |
58 | Chen S., Pan Q., Li J., Zhao C., Guo X., Zhao Y., Jiu T., Sci. China Mater., 2020, 63(12), 2465—2476 |
59 | Li J., Chen Y., Guo J., Wang F., Liu H., Li Y., Adv. Funct. Mater., 2020, 30(42), 2004115 |
60 | Ma K., Wu J., Wang X., Sun Y., Xiong Z., Dai F., Bai H., Xie Y., Kang Z., Zhang Y., Angew. Chem., 2022, 134(42), e202211094 |
61 | Sakamoto R., Fukui N., Maeda H., Matsuoka R., Toyoda R., Nishihara H., Adv. Mater., 2019, 31(42), 1804211 |
62 | Li L., Zuo Z., Wang F., Gao J., Cao A., He F., Li Y., Adv. Mater., 2020, 32(14), 2000140 |
63 | Ma R., Zhou K., Sun Y., Liu T., Kan Y., Xiao Y., Peña T. A. D., Li Y., Zou X., Xing Z., Matter, 2022, 5(2), 725—734 |
64 | Liu T., Yang T., Ma R., Zhan L., Luo Z., Zhang G., Li Y., Gao K., Xiao Y., Yu J., Joule, 2021, 5(4), 914—930 |
65 | Jiang M., Bai H., Zhi H., Yan L., Woo H. Y., Tong L., Wang J., Zhang F., An Q., Energy Environ. Sci., 2021, 14(7), 3945—3953 |
66 | Chen H., Zhao T., Li L., Tan P., Lai H., Zhu Y., Lai X., Han L., Zheng N., Guo L., He F., Adv. Mater., 2021, 33(37), 2102778 |
67 | Ma L., Zhang S., Zhu J., Wang J., Ren J., Zhang J., Hou J., Nat. Commun., 2021, 12(1), 1—12 |
68 | Shen H., Wan L., Fu Z., Xue L., Liu J., Han S., Du S., Lu F., Li J., Opt. Mater., 2023, 135, 113219 |
69 | Ding Y., Zhang X., Feng H., Ke X., Meng L., Sun Y., Guo Z., Cai Y., Jiao C., Wan X., Li C., Zheng N., Xie Z., Chen Y., ACS Appl. Mater. Interfaces, 2020, 12(24), 27425—27432 |
70 | Gao K., Deng W., Xiao L., Hu Q., Kan Y., Chen X., Wang C., Huang F., Peng J., Wu H., Nano Energy, 2016, 30, 639—648 |
71 | Gao H. H., Sun Y., Wan X., Kan B., Ke X., Zhang H., Li C., Chen Y., Sci. China Mater., 2017, 60(9), 819—828 |
72 | Ye L., Hu H., Ghasemi M., Wang T., Collins B. A., Kim J. H., Jiang K., Carpenter J. H., Li H., Li Z., McAfee T., Zhao J., Chen X., Lai J., Ma T., Bredas J., Yan H., Ade H., Nat. Mater., 2018, 17(3), 253—260 |
73 | Naveed H. B., Zhou K., Ma W., Acc. Chem. Res., 2019, 52(10), 2904—2915 |
74 | Li W., Xiao Z., Cai J., Smith J. A., Spooner E. L. K., Kilbride R. C., Game O. S., Meng X., Li D., Zhang H., Nano Energy, 2019, 61, 318—326 |
75 | Song J., Zhang M., Yuan M., Qian Y., Sun Y., Liu F., Small Methods, 2018, 2(3), 1700229 |
76 | Jiang M., Bai H. R., Zhi H. F., Sun J. K., Wang J. L., Zhang F., An Q., ACS Energy Lett., 2021, 6(8), 2898—2906 |
77 | Xue L., Liu X., Wang Q., Yang M., Du S., Yang C., Tong J., Xia Y., Li J., Energy Technol., 2022, 10(10), 2200504 |
78 | Liu L., Kan Y., Ran G., Zhao M., Jia Z., Chen S., Wang J., Chen H., Zhao C., Gao K., Zhang W., Jiu T., Sci. China Mater., 2022, 65(10), 2647—2656 |
79 | Wang J. X., Bi Z. N., Liang Z. R., Xu X. Q., Acta Phys. Sin., 2016, 65(5), 058801 |
王军霞, 毕卓能, 梁柱荣, 徐雪青. 物理学报, 2016, 65(5), 058801 | |
80 | Chen S., Shi G., Adv. Mater., 2017, 29(24), 1605448 |
81 | Hadadian M., Smått J. H., Correa B. J. P., Energy Environ. Sci., 2020, 13(5), 1377—1407 |
82 | Gao K., Zhu Z., Xu B., Jo S. B., Kan Y., Peng X., Jen A. K. Y., Adv. Mater., 2017, 29(47), 1703980 |
83 | Gao K., Xu B., Hong C., Shi X., Liu H., Li X., Xie L., Jen A. K. Y., Adv. Energy Mater., 2018, 8(22), 1800809 |
84 | Fu W., Wang J., Zuo L., Gao K., Liu F., Ginger D. S., Jen A. K. Y., ACS Energy Lett., 2018, 3(9), 2086—2093 |
85 | Li J., Jiu T., Chen S., Liu L., Yao Q., Bi F., Zhao C., Wang Z., Zhao M., Zhang G., Xue Y., Lu F., Li Y., Nano Lett., 2018, 18(11), 6941—6947 |
86 | Li H., Zhang R., Li Y., Li Y., Liu H., Shi J., Zhang H., Wu H., Luo Y., Li D., Li Y., Meng Q., Adv. Energy Mater., 2018, 8(30), 1802012 |
87 | Fan W., Zhang S., Xu C., Si H., Xiong Z., Zhao Y., Ma K., Zhang Z., Liao Q., Kang Z., Zhang Y., Adv. Funct. Mater., 2021, 31(34), 2104633 |
88 | Zhang J., Tian J., Fan J., Yu J., Ho W., Small, 2020, 16(13), 1907290 |
89 | Li J., Zhao M., Zhao C., Jian H., Wang N., Yao L., Huang C., Zhao Y., Jiu T., ACS Appl. Mater. Interfaces, 2018, 11(3), 2626—2631 |
90 | Tang J., Zhao M., Cai X., Liu L., Li X., Jiu T., Chem. Res. Chinese Universities, 2021, 37(6), 1309—1316 |
91 | Luan Y., Wang F., Zhuang J., Lin T., Wei Y., Chen N., Zhang Y., Wang F., Yu P., Mao L., Liu H., Wang J., EcoMat, 2021, 3(2), e12092 |
92 | Kuang C., Tang G., Jiu T., Yang H., Liu H., Li B., Luo W., Li X., Zhang W., Lu F., Fang J., Li Y., Nano Lett., 2015, 15(4), 2756—2762 |
93 | Li M., Wang Z. K., Kang T., Yang Y., Gao X., Hsu C. S., Li Y., Liao L. S., Nano Energy, 2018, 43, 47—54 |
94 | Li J., Jiu T., Duan C., Wang Y., Zhang H., Jian H., Zhao Y., Wang N., Huang C., Li Y., Nano Energy, 2018, 46, 331—337 |
95 | Zhang S., Si H., Fan W., Shi M., Li M., Xu C., Zhang Z., Liao Q., Sattar A., Kang Z., Zhang Y., Angew. Chem., 2020, 132(28), 11670—11679 |
96 | Chen Y., Li J., Wang F., Guo J., Jiu T., Liu H., Li Y., Nano Energy, 2019, 64, 103932 |
97 | Ren Y., Zhang D., Suo J., Cao Y., Eickemeyer F. T., Vlachopoulos N., Zakeeruddin S. M., Hagfeldt A., Grätzel M., Nature, 2022, 1—6 |
98 | Gong J., Sumathy K., Qiao Q., Zhou Z., Renewable Sustainable Energy Rev., 2017, 68, 234—246 |
99 | Gong J., Liang J., Sumathy K., Renewable Sustainable Energy Rev., 2012, 16(8), 5848—5860 |
100 | Ren H., Shao H., Zhang L., Guo D., Jin Q., Yu R., Wang L., Li Y., Wang Y., Zhao H., Wang D., Adv. Energy Mater., 2015, 5(12), 1500296 |
101 | Pan Z., Rao H., Mora S. I., Bisquert J., Zhong X., Chem. Soc. Rev., 2018, 47(20), 7659—7702 |
[1] | SHI Yu, ZHANG Liu, GUO Xia, WANG Yang, XIAO Haiqin, FANG Jin, ZHOU Yi, ZHANG Maojie. All-small-molecule Organic Solar Cells with Enhanced Efficiency and Stability Enabled by Polymer Additive as a Morphology Modulator [J]. Chem. J. Chinese Universities, 2023, 44(7): 20230047. |
[2] | ZHAO Mingxin, YAO Zhigang, LIU Zhongyuan, XU Wenjing, MA Xiaoling, ZHANG Fujun. Research Progress of Layer-by-layer Deposited Organic Solar Cells [J]. Chem. J. Chinese Universities, 2023, 44(7): 20230120. |
[3] | WEI Wanxia, ZHOU Xianmin, DONG Xinyun, LIU Tiefeng, XIE Cong, CHENG Jingyu, CHEN Jianping, LU Xin, FENG Kai, ZHOU Yinhua. Cross-linking PEDOT∶F Hole-transporting Layer to Enhance Photovoltaic Performance of Flexible Organic Solar Cells [J]. Chem. J. Chinese Universities, 2023, 44(7): 20230069. |
[4] | SI Wenqin, LI Tengfei, LIN Yuze. Asymmetric Fused-ring Photovoltaic Electron Acceptors [J]. Chem. J. Chinese Universities, 2023, 44(7): 20230149. |
[5] | ZHANG Yi, SHAN Tong, WANG Yan, ZHONG Hongliang. Non-fullerene Acceptors with Germanium as Bridge Atom and Their Applications in Organic Solar Cells [J]. Chem. J. Chinese Universities, 2023, 44(7): 20230050. |
[6] | ZHANG Ming, ZHONG Wenkai, QIAN Shiyun, LYU Bosai, ZHOU Guanqing, XUE Xiaonan, ZHOU Zichun, SHI Zhiwen, ZHU Lei, ZHANG Yongming, LIU Feng. Understanding the Mixing Phase Structure in Multi-length-scale Morphology to Arrest High-performance Photovoltaic Devices [J]. Chem. J. Chinese Universities, 2023, 44(7): 20230147. |
[7] | ZHANG Zesheng, DENG Yuxin, KONG Lingchen, LUO Mei, WANG Xinkang, ZHANG Lianjie, CHEN Junwu. Synthesis of Difluorodithienophenazine Based Conjugated Polymers and Their Organic Photovoltaic Performance [J]. Chem. J. Chinese Universities, 2023, 44(7): 20230148. |
[8] | WEN Min, LI Haojie, LI Junliang, LIU Siqi, HU Xiaotian, CHEN Yiwang. Advances in Pseudo-planar Heterojunction Organic Photovoltaic Devices [J]. Chem. J. Chinese Universities, 2023, 44(7): 20230174. |
[9] | HE Wei, CHEN Fei, LI Hongxiang, WANG Jiayu, QIN Jiaqiang, CUI Ningbo, YAN Cenqi, CHENG Pei. High-performance Organic Solar Cells Based on Trifluorobenzoic Acid Self-assembled Anode Interfacial Layers [J]. Chem. J. Chinese Universities, 2023, 44(7): 20230161. |
[10] | GUO Yuntong, CHEN Zhenyu, GE Ziyi. Effects of Different Halogenated End-groups Non-fullerene Acceptors on the Organic Solar Cells [J]. Chem. J. Chinese Universities, 2023, 44(7): 20230084. |
[11] | ZHANG Yongqian, ZHU Xiaoyu, MIAO Junhui, LIU Jun, WANG Lixiang. Effect of Alkyl-chain Branching Position on Molecular Aggregation of All-fused-ring Molecules [J]. Chem. J. Chinese Universities, 2023, 44(7): 20230068. |
[12] | SUN Heng, ZHANG Pengyu, ZHANG Yingnan, ZHAN Chuanlang. Recent Progress in Non-fused Ring Small-molecule Acceptor Materials [J]. Chem. J. Chinese Universities, 2023, 44(7): 20230076. |
[13] | ZHANG Yue, WU Baoqi, TIAN Shizeng, HUANG Xuelong, LI Junyu, PAN Langheng, HUANG Fei, CAO Yong, DUAN Chunhui. Benzotriazole-based Polymer Acceptors with Precise Structures for All-polymer Solar Cells [J]. Chem. J. Chinese Universities, 2023, 44(7): 20230129. |
[14] | ZHANG Yan, JIANG Xingjian, LIU Ming, ZHENG Zhi, ZHANG Yong. Predict Efficiency of Organic Solar Cell with Low Generalization Error Based on Molecular Property and Device Fabrication [J]. Chem. J. Chinese Universities, 2023, 44(7): 20230165. |
[15] | ZHANG Youhui, YANG Na, DUAN Na, CHENG Yujun, YOU Shiyong, WU Feiyan, CHEN Lie. End-capped Polymer Donors for Highly-efficient Organic Solar Cells [J]. Chem. J. Chinese Universities, 2023, 44(7): 20230169. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||