Chem. J. Chinese Universities ›› 2023, Vol. 44 ›› Issue (10): 20230155.doi: 10.7503/cjcu20230155
• Physical Chemistry • Previous Articles Next Articles
LIAO Shouwei1, LIU Yanchang1, SHI Zenan1, ZHAO Daohui2, WEI Yanying1,3(), LI Libo1,3(
)
Received:
2023-03-30
Online:
2023-10-10
Published:
2023-05-31
Contact:
WEI Yanying, LI Libo
E-mail:ceyywei@scut.edu.cn;celbli@scut.edu.cn
Supported by:
CLC Number:
TrendMD:
LIAO Shouwei, LIU Yanchang, SHI Zenan, ZHAO Daohui, WEI Yanying, LI Libo. Molecular Dynamics Simulation of Ion Adsorption at Water/Graphene Interface: Force Field Parameter Optimization and Adsorption Mechanism[J]. Chem. J. Chinese Universities, 2023, 44(10): 20230155.
Force field | Ion | σi⁃C/nm | Optimized parameter | Initial parameter | |||
---|---|---|---|---|---|---|---|
Eads /(kJ·mol-1) | Eads/(kJ·mol-1) | ||||||
Merz | Li+ | -10.4 | 0.2805 | 1.503 | -10.4 | 0.110 | -4.0 |
Na+ | -13.8 | 0.2924 | 1.951 | -13.8 | 0.244 | -1.2 | |
K+ | -12.6 | 0.3161 | 1.827 | -12.4 | 0.591 | -2.9 | |
Ca2+ | -16.5 | 0.3043 | 4.102 | -16.8 | 0.413 | -2.9 | |
Mg2+ | -15.7 | 0.2868 | 5.405 | -15.9 | 0.175 | -2.5 | |
Cl- | -6.9 | 0.3552 | 1.483 | -6.8 | 1.044 | -0.4 | |
Netz | Li+ | -10.4 | 0.3042 | 0.839 | -10.8 | 0.017 | -4.8 |
Na+ | -13.8 | 0.3512 | 0.935 | -13.6 | 0.017 | -1.6 | |
K+ | -12.6 | 0.3872 | 0.836 | -12.5 | 0.017 | -0.9 | |
Ca2+ | -16.5 | 0.2812 | 5.242 | -16.1 | 0.679 | -2.1 | |
Mg2+ | -15.7 | 0.2422 | 14.458 | -15.9 | 0.538 | -1.4 | |
Cl- | -6.9 | 0.3807 | 1.040 | -6.8 | 0.448 | — |
Table 1 LJ i-C parameters and adsorption energy of ion-graphene simulated with Merz and Netz force fields
Force field | Ion | σi⁃C/nm | Optimized parameter | Initial parameter | |||
---|---|---|---|---|---|---|---|
Eads /(kJ·mol-1) | Eads/(kJ·mol-1) | ||||||
Merz | Li+ | -10.4 | 0.2805 | 1.503 | -10.4 | 0.110 | -4.0 |
Na+ | -13.8 | 0.2924 | 1.951 | -13.8 | 0.244 | -1.2 | |
K+ | -12.6 | 0.3161 | 1.827 | -12.4 | 0.591 | -2.9 | |
Ca2+ | -16.5 | 0.3043 | 4.102 | -16.8 | 0.413 | -2.9 | |
Mg2+ | -15.7 | 0.2868 | 5.405 | -15.9 | 0.175 | -2.5 | |
Cl- | -6.9 | 0.3552 | 1.483 | -6.8 | 1.044 | -0.4 | |
Netz | Li+ | -10.4 | 0.3042 | 0.839 | -10.8 | 0.017 | -4.8 |
Na+ | -13.8 | 0.3512 | 0.935 | -13.6 | 0.017 | -1.6 | |
K+ | -12.6 | 0.3872 | 0.836 | -12.5 | 0.017 | -0.9 | |
Ca2+ | -16.5 | 0.2812 | 5.242 | -16.1 | 0.679 | -2.1 | |
Mg2+ | -15.7 | 0.2422 | 14.458 | -15.9 | 0.538 | -1.4 | |
Cl- | -6.9 | 0.3807 | 1.040 | -6.8 | 0.448 | — |
1 | Shen J., Liu G., Han Y., Jin W., Nat. Rev. Mater., 2021, 6(4), 294—312 |
2 | Mohammadi A. V., Rosen J., Gogotsi Y., Science, 2021, 372(6547), 1165 |
3 | Zhan H., Xiong Z., Cheng C., Liang Q., Liu J. Z., Li D., Adv. Mater., 2020, 32(18), 1904562 |
4 | Liu X., Zhang L., Cui X., Zhang Q., Hu W., Du J., Zeng H., Xu Q., Adv. Sci., 2021, 8(23), 2102493 |
5 | Radha B., Esfandiar A., Wang F. C., Rooney A. P., Gopinadhan K., Keerthi A., Mishchenko A., Janardanan A., Blake P., Fumagalli L., Lozada⁃Hidalgo M., Garaj S., Haigh S. J., Grigorieva I. V., Wu H. A., Geim A. K., Nature, 2016, 538(7624), 222—225 |
6 | Kang Y., Xia Y., Wang H., Zhang X., Adv. Funct. Mater., 2019, 29(29), 1902014 |
7 | Robin P., Emmerich T., Ismail A., Nigues A., You Y., Nam G. H., Keerthi A., Siria A., Geim A. K., Radha B., Bocquet L., Science, 2023, 379(6628), 161—167 |
8 | Keerthi A., Goutham S., You Y., Iamprasertkun P., Dryfe R. A. W., Geim A. K., Radha B., Nat. Commun., 2021, 12(1), 3092 |
9 | Chen L., Shi G., Shen J., Peng B., Zhang B., Wang Y., Bian F., Wang J., Li D., Qian Z., Xu G., Liu G., Zeng J., Zhang L., Yang Y., Zhou G., Wu M., Jin W., Li J., Fang H., Nature, 2017, 550(7676), 380—383 |
10 | Abraham J., Vasu K. S., Williams C. D., Gopinadhan K., Su Y., Cherian C. T., Dix J., Prestat E., Haigh S. J., Grigorieva I. V., Carbone P., Geim A. K., Nair R. R., Nat. Nanotechnol., 2017, 12(6), 546—550 |
11 | Gopinadhan K., Hu S., Esfandiar A., Lozada⁃Hidalgo M., Wang F. C., Yang Q., Tyurnina A. V., Keerthi A., Radha B., Geim A. K., Science, 2019, 363(6423), 145—147 |
12 | Fu H., Wang Z., Li P., Qian W., Zhang Z., Zhao X., Feng H., Yang Z., Kou Z., He D., Nano Res., 2023, 16, 1826—1834 |
13 | Wang L., Yuan Z., Zhang Y., Guo W., Sun X., Duan X., Sci. China Mater., 2022, 65(3), 803—810 |
14 | Xiao K., Jiang L., Antonietti M., Joule, 2019, 3(10), 2364—2380 |
15 | Ding L., Xiao D., Lu Z., Deng J., Wei Y., Caro J., Wang H., Angew Chem. Int. Ed. Engl., 2020, 59(22), 8720—8726 |
16 | Tanimoto I. M. F., Cressiot B., Greive S. J., Le Pioufle B., Bacri L., Pelta J., Nano Res., 2022, 15, 9906—9920 |
17 | Zhao Y., Xin W., Qian Y., Zhang Z., Wu Y., Lin X., Kong X. Y., Jiang L., Wen L., Sci. China Mater., 2022, 65, 2729—2736 |
18 | Xiao J., Zhan H., Wang X., Xu Z. Q., Xiong Z., Zhang K., Simon G. P., Liu J. Z., Li D., Nat. Nanotechnol., 2020, 15(8), 683 |
19 | Xia Y., Mathis T. S., Zhao M. Q., Anasori B., Dang A., Zhou Z., Cho H., Gogotsi Y., Yang S., Nature, 2018, 557(7705), 409 |
20 | Mo T., Bi S., Zhang Y., Presser V., Wang X., Gogotsi Y., Feng G., ACS Nano, 2020, 14(2), 2395—2403 |
21 | Robin P., Kavokine N., Bocquet L., Science, 2021, 373(6555), 687 |
22 | Mouterde T., Keerthi A., Poggioli A. R., Dar S. A., Siria A., Geim A. K., Bocquet L., Radha B., Nature, 2019, 567(7746), 87—90 |
23 | Bocquet L., Nat. Mater., 2020, 19(3), 254—256 |
24 | al⁃Badri M. A., Smith P., Sinclair R. C., al⁃Jamal K. T., Lorenz C. D., Carbon, 2021, 174, 266—275 |
25 | Cheng C., Jiang G., Garvey C. J., Wang Y., Simon G. P., Liu J. Z., Li D., Sci. Adv., 2016, 2(2), e1501272 |
26 | Abal J. P. K., Dillenburg R. F., Kohler M. H., Barbosa M. C., ACS Appl. Nano Mater., 2021, 4(10), 10467—10476 |
27 | Zhao W., Sun Y., Zhu W., Jiang J., Zhao X., Lin D., Xu W., Duan X., Francisco J. S., Zeng X. C., Nat. Commun., 2021, 12(1), 5602 |
28 | Zhao N., Deng J., Zhu Y., Chen Y., Qin Y., Ruan Y., Zhang Y., Gao Q., Lu X., Carbon, 2020, 164, 305—316 |
29 | Tan J., Guo Y., Guo W., Nano Res., 2023, 16, 1792—1797 |
30 | Li L., Fennell C. J., Dill K. A., J. Phys. Chem. B, 2014, 118(24), 6431—6437 |
31 | Xin W. W., Wen L. P., Chem. J. Chinese Universities, 2021, 42(2), 445—455 |
辛伟闻, 闻利平. 高等学校化学学报, 2021, 42(2), 445—455 | |
32 | McCaffrey D. L., Nguyen S. C., Cox S. J., Weller H., Alivisatos A. P., Geissler P. L., Saykally R. J., Proc. Natl. Acad. Sci. U. S. A., 2017, 114(51), 13369—13373 |
33 | Shi G., Ding Y., Fang H., J. Comput. Chem., 2012, 33(14), 1328—1337 |
34 | Chen L., Guo Y., Xu Z., Yang X., ChemPhysChem, 2018, 19(21), 2954—2960 |
35 | Misra R. P., Blankschtein D., J. Phys. Chem. C, 2021, 125(4), 2666—2679 |
36 | Zhan C., Ceron M. R., Hawks S. A., Otani M., Woods B. C., Tuan Anh P., Stadermann M., Campbell P. G., Nat. Commun., 2019, 10, 4858 |
37 | Zhao G., Zhu H., Adv. Mater., 2020, 32(22), 1905756 |
38 | Williams C. D., Dix J., Troisi A., Carbone P., J. Phys. Chem. Lett., 2017, 8(3), 703—708 |
39 | Aydin F., Moradzadeh A., Bilodeau C. L., Lau E. Y., Schwegler E., Aluru N. R., Pham T. A., J. Chem. Theory Comput., 2021, 17(3), 1596—1605 |
40 | Liao S., Ke Q., Wei Y., Li L., Appl. Surf. Sci., 2022, 603, 154477 |
41 | Heiranian M., Wu Y., Aluru N. R., J. Chem. Phys., 2017, 147(10), 104706 |
42 | Kraemer A., Pickard F. C., Huang J., Venable R. M., Simmonett A. C., Reith D., Kirschner K. N., Pastor R. W., Brooks B. R., J. Chem. Theory Comput., 2019, 15(6), 3854—3867 |
43 | Ashbaugh H. S., Liu L., Surampudi L. N., J. Chem. Phys., 2011, 135(5), 054510 |
44 | Torras J., Aleman C., J. Phys. Chem. B, 2013, 117(36), 10513—10522 |
45 | Kahlen J., Salimi L., Sulpizi M., Peter C., Donadio D., J. Phys. Chem. B, 2014, 118(14), 3960—3972 |
46 | Liao S., Ke Q., Wei Y., Li L., Nano Res., 2023, 16, 6298—6307 |
47 | Hu B., Zhu H. C., Chem. J. Chinese Universities, 2022, 43(2), 20210614 |
胡波, 朱昊辰. 高等学校化学学报, 2022, 43(2), 20210614 | |
48 | Li L., Duan Y., Liao S., Ke Q., Qiao Z., Wei Y., Chem. Eng. J., 2020, 386, 123945 |
49 | Razmjou A., Hosseini E., Cha⁃Umpong W., Korayem A. H., Asadnia M., Moazzam P., Orooji Y., Karimi⁃Maleh H., Chen V., Desalination, 2020, 496, 114729 |
50 | Zhao T., Qing L., Long T., Xu X., Zhao S., Lu X., Aiche J., 2021, 67(7), e17266 |
51 | Zhou K., Xu Z., Nano Lett., 2020, 20(11), 8392—8398 |
52 | Li P. F., Song L. F., Merz K. M., J. Chem. Theory Comput., 2015, 11(4), 1645—1657 |
53 | Li P. F., Roberts B. P., Chakravorty D. K., Merz K. M., J. Chem. Theory Comput., 2013, 9(6), 2733—2748 |
54 | Mamatkulov S., Fyta M., Netz R. R., J. Chem. Phys., 2013, 138(2), 024505 |
55 | Horinek D., Mamatkulov S. I., Netz R. R., J. Chem. Phys., 2009, 130(12), 124507 |
56 | Vorobyov I., Li L., Allen T. W., J. Phys. Chem. B, 2008, 112(32), 9588—9602 |
57 | Torrie G. M., Valleau J. P., J. Comput. Phys., 1977, 23(2), 187—199 |
58 | Kumar S., Bouzida D., Swendsen R. H., Kollman P. A., Rosenberg J. M., J. Comput. Chem., 1992, 13(8), 1011—1021 |
59 | Hub J. S., de Groot B. L., Grubmueller H., Groenhof G., J. Chem. Theory Comput., 2014, 10(1), 381—390 |
60 | Yu Y., Fan J., Esfandiar A., Zhu Y., Wu H., Wang F., J. Phys. Chem. C, 2019, 123(2), 1462—1469 |
61 | Wang S., Yang L., He G., Shi B., Li Y., Wu H., Zhang R., Nunes S., Jiang Z., Chem. Soc. Rev., 2020, 49(4), 1071—1089 |
62 | Werder T., Walther J. H., Jaffe R. L., Halicioglu T., Koumoutsakos P., J. Phys. Chem. B, 2003, 107(6), 1345—1352 |
63 | Berendsen H. J. C., Grigera J. R., Straatsma T. P., J. Phys. Chem., 1987, 91(24), 6269—6271 |
64 | Bayly C. I., Cieplak P., Cornell W. D., Kollman P. A., J. Chem. Phys., 1993, 97(40), 10269—10280 |
65 | Lu T., Chen F., J. Comput. Chem., 2012, 33(5), 580—592 |
66 | Abraham M. J., Murtola T., Schulz R., Pall S., Smith J. C., Hess B., Lindahl E., SoftwareX, 2015, 1/2, 19—25 |
67 | Humphrey W., Dalke A., Schulten K., J. Mol. Graph. Model., 1996, 14(1), 33—38 |
68 | Darden T., York D., Pedersen L., J. Chem. Phys., 1993, 98(12), 10089—10092 |
69 | Miyamoto S., Kollman P. A., J. Comput. Chem., 1992, 13(8), 952—962 |
70 | Hoover W. G., Phys. Rev. A, 1985, 31(3), 1695—1697 |
71 | Nose S., J. Chem. Phys., 1984, 81(1), 511—519 |
72 | Ke Q., Gong X., Liao S., Duan C., Li L., J. Mol. Liq., 2022, 365, 120116 |
73 | Nose S., Klein M. L., Mol. Phys., 1983, 50(5), 1055—1076 |
74 | Parrinello M., Rahman A., Phys. Rev. Lett., 1980, 45(4), 1196—1199 |
75 | Yu Y., Fan J., Xia J., Zhu Y., Wu H., Wang F., Nanoscale, 2019, 11(17), 8449—8457 |
76 | Li L., Vorobyov I., Allen T. W., J. Phys. Chem. B, 2008, 112(32), 9574—9587 |
77 | Li L., Vorobyov I., Allen T. W., J. Phys. Chem. B, 2013, 117(40), 11906—11920 |
78 | Shi G., Liu J., Wang C., Song B., Tu Y., Hu J., Fang H., Sci. Rep., 2013, 3, 3436 |
[1] | FU Zhongheng, CHEN Xiang, YAO Nan, YU Legeng, SHEN Xin, ZHANG Rui, ZHANG Qiang. Research Advances in Transport Mechanism of Lithium Ions in Solid Electrolytes [J]. Chem. J. Chinese Universities, 2023, 44(5): 20220703. |
[2] | TANG Mengke, JIANG Liang, XU Wenxuan, ZHANG Zilin, TANG Daoyuan, HUANG Donghui, YANG Haoran, GAO Jiefeng, JI Xiang, WANG Yanqing, XU Huan. Microwave-assisted Biomineralization of Graphene to Enhance the Interfacial Interactions with Poly(lactic acid) [J]. Chem. J. Chinese Universities, 2023, 44(4): 20220601. |
[3] | HU Shiying, SHEN Jiayan, HAN Junshan, HAO Tingting, LI Xing. Preparation of CoO Nanoparticles/Hollow Graphene Nanofiber Composites and Its Electrochemical Performances [J]. Chem. J. Chinese Universities, 2023, 44(2): 20220462. |
[4] | SHEN Qi, CHEN Haiyao, GAO Denghui, ZHAO Xi, NA Risong, LIU Jia, HUANG Xuri. Interaction Mechanism of the Natural Product Falcarindiol and Human GABAA Receptor [J]. Chem. J. Chinese Universities, 2023, 44(2): 20220500. |
[5] | LI Jichen, CAI Shanshan, PENG Jubo, LI Hongfei, DUAN Xiaozheng. Molecular Dynamics Simulation of Structural Variations of Ionic Polymeric Vesicles under Electric Field [J]. Chem. J. Chinese Universities, 2023, 44(2): 20220553. |
[6] | HU Hongsu, SHEN Chuanzhe, WANG Yuhang, WANG Qingqing, HE Shilong, LI Peng. Performance and Mechanism of Graphene-carbon Felt Composited Gas Diffusion Cathode for Hydrogen Peroxide Electrochemical Production [J]. Chem. J. Chinese Universities, 2023, 44(11): 20230245. |
[7] | ZHOU Zihao, WANG Sihao, HUANG Daichuan, LIU Bo, NING Hongbo. Molecular Dynamics Simulation Study on High Temperature Oxidation Mechanism of n-Propylbenzene [J]. Chem. J. Chinese Universities, 2023, 44(11): 20230276. |
[8] | WANG Ruina, SUN Ruifen, ZHONG Tianhua, CHI Yuwu. Fabrication of a Dispersible Large-sized Graphene Quantum Dot Assemblies from Graphene Oxide and Its Electrogenerated Chemiluminescence Behaviors [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220161. |
[9] | GAO Zhiwei, LI Junwei, SHI Sai, FU Qiang, JIA Junru, AN Hailong. Analysis of Gating Characteristics of TRPM8 Channel Based on Molecular Dynamics [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220080. |
[10] | YAN Jiasen, HAN Xianying, DANG Zhaohan, LI Jiangang, HE Xiangming. Preparation and Performance of Paraffin/Expanded Graphite/Graphene Composite Phase Change Heat Storage Material [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220054. |
[11] | CAO Lei, CHEN Meijun, YUAN Gang, CHANG Gang, ZHANG Xiuhua, WANG Shengfu, HE Hanping. Solution-gated Graphene Field Effect Transistor Sensor Based on Crown Ether Functionalization for the Detection of Mercury Ion [J]. Chem. J. Chinese Universities, 2022, 43(4): 20210688. |
[12] | ZHENG Xuelian, YANG Cuicui, TIAN Weiquan. The Second Order Nonlinear Optical Properties of Azulene-defect Graphene Nanosheets with Full Armchair Edge [J]. Chem. J. Chinese Universities, 2022, 43(3): 20210806. |
[13] | YANG Junge, GAO Chengqian, LI Boxin, YIN Dezhong. Preparation of High Thermal Conductivity Phase Change Monolithic Materials Based on Pickering Emulsion Stabilized by Surface Modified Graphene Oxide [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210593. |
[14] | ZHANG Zhibo, SHANG Han, XU Wenxuan, HAN Guangdong, CUI Jinsheng, YANG Haoran, LI Ruixin, ZHANG Shenghui, XU Huan. Self-Assembly of Graphene Oxide at Poly(3-hydroxybutyrate) Microparticles Toward High-performance Intercalated Nanocomposites [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210566. |
[15] | HU Bo, ZHU Haochen. Dielectric Constant of Confined Water in a Bilayer Graphene Oxide Nanosystem [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210614. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||