Chem. J. Chinese Universities ›› 2021, Vol. 42 ›› Issue (5): 1407.doi: 10.7503/cjcu20200870
• Review • Previous Articles Next Articles
FU Jinzhou1, WANG Hanwei2, LI Yingying2, WANG Chao2, LI Caicai2, SUN Qingfeng2(), LI Huiqiao1(
)
Received:
2020-12-16
Online:
2021-05-10
Published:
2021-03-24
Contact:
SUN Qingfeng,LI Huiqiao
E-mail:qfsun@zafu.edu.cn;hqli@hust.edu.cn
Supported by:
CLC Number:
TrendMD:
FU Jinzhou, WANG Hanwei, LI Yingying, WANG Chao, LI Caicai, SUN Qingfeng, LI Huiqiao. Micro/Nanocellulose Functional Membranes for Energy and Environment[J]. Chem. J. Chinese Universities, 2021, 42(5): 1407.
1 | Klemm D., Heublein B., Fink H. P., Bohn A., Angew. Chem. Int. Ed.,2005, 44(22), 3358—3393 |
2 | Chen C., Kuang Y., Zhu S., Burgert I., Keplinger T., Gong A., Li T., Berglund L., Eichhorn S. J., Hu L., Nat. Rev. Mater.,2020, 5(9), 642—666 |
3 | Pei J. C., Ping Q. W., Tang A. M., Li X. P., Lignocellulosic Chemistry, China Light Industry Press, Beijing, 2012, 162—254(裴继诚, 平清伟, 唐爱民, 李新平. 植物纤维化学, 北京: 中国轻工业出版社, 2012, 162—254) |
4 | Somerville C., Bauer S., Brininstool G., Facette M., Hamann T., Milne J., Osborne E., Paredez A., Persson S., Raab T., Vorwerk S., Youngs H., Science,2004, 306(5705), 2206 |
5 | Abe K., Yano H., Cellulose,2009, 16(6), 1017—1023 |
6 | Chen W. S., Yu H. P., Lee S. Y., Wei T., Li J., Fan Z. J., Chem. Soc. Rev.,2018, 47(8), 2837—2872 |
7 | Heinze T., Liebert T., Prog. Polym. Sci.,2001, 26(9), 1689—1762 |
8 | Kontturi E., Laaksonen P., Linder M. B., Nonappa, Groschel A. H., Rojas O. J., Ikkala O., Adv. Mater.,2018, 30(24), 1703779 |
9 | Klemm D., Cranston E. D., Fischer D., Gama M., Kedzior S. A., Kralisch D., Kramer F., Kondo T., Lindström T., Nietzsche S., Petzold⁃Welcke K., Rauchfuß F., Mater. Today,2018, 21(7), 720—748 |
10 | Berglund L. A., Burgert I., Adv. Mater.,2018, 30(19), 1704285 |
11 | Siro I., Plackett D., Cellulose,2010, 17(3), 459—494 |
12 | Klemm D., Kramer F., Moritz S., Lindström T., Ankerfors M., Gray D., Dorris A., Angew. Chem. Int. Ed.,2011, 50(24), 5438— 5466 |
13 | Espinha A., Dore C., Matricardi C., Alonso M. I., Goñi A. R., Mihi A., Nat. Photonics,2018, 12(6), 343—348 |
14 | Gladman A. S., Matsumoto E. A., Nuzzo R. G., Mahadevan L., Lewis J. A., Nat. Mater.,2016, 15(4), 413—418 |
15 | Luo J., Zhang M., Yang B., Liu G., Tan J., Nie J., Song S., Carbohydr. Polym.,2019, 203, 110—118 |
16 | Lin N., Dufresne A., Eur. Polym. J.,2014, 59, 302—325 |
17 | Yue X. J., Zhang T., Yang D. Y., Qiu F. X., Wei G. Y., Zhou H., Nano Energy,2019, 63, 103808 |
18 | Portela R., Leal C. R., Almeida P. L., Sobral R. G., Microb. Biotechnol.,2019, 12(4), 586—610 |
19 | Rajala S., Siponkoski T., Sarlin E., Mettänen M., Vuoriluoto M., Pammo A., Juuti J., Rojas O. J., Franssila S., Tuukkanen S., ACS Appl. Mater. Interfaces,2016, 8(24), 15607—15614 |
20 | Kuang Y., Chen G., Ming S. Y., Wu Z. F., Fang Z. Q., Cellulose,2016, 23(3), 1979—1987 |
21 | Li T., Zhang X., Lacey S. D., Mi R., Zhao X., Jiang F., Song J., Liu Z., Chen G., Dai J., Yao Y., Das S., Yang R., Briber R. M., Hu L., Nat. Mater.,2019, 18(6), 608—613 |
22 | Luo W., Hayden J., Jang S. H., Wang Y. L., Zhang Y., Kuang Y. D., Wang Y. B., Zhou Y. B., Rubloff G. W., Lin C. F., Hu L. B., Adv. Energy Mater.,2018, 8(9), 1702615 |
23 | Zhang J., Fu J., Song X., Jiang G., Zarrin H., Xu P., Li K., Yu A., Chen Z., Adv. Energy Mater.,2016, 6(14), 1600476 |
24 | Carpenter A. W., de Lannoy C. F., Wiesner M. R., Environ. Sci. Technol.,2015, 49(9), 5277—5287 |
25 | Hokkanen S., Bhatnagar A., Sillanpää M., Water Res.,2016, 91, 156—173 |
26 | Ling S., Kaplan D. L., Buehler M. J., Nat. Rev. Mater.,2018, 3(4), 18016 |
27 | Kelly J. A., Giese M., Shopsowitz K. E., Hamad W. Y., MacLachlan M. J., Acc. Chem. Res.,2014, 47(4), 1088—1096 |
28 | Olsson R. T., Azizi Samir M. A. S., Salazar⁃Alvarez G., Belova L., Ström V., Berglund L. A., Ikkala O., Nogués J., Gedde U. W., Nat. Nanotechnol.,2010, 5(8), 584—588 |
29 | Hu W. L., Chen S. Y., Yang J. X., Li Z., Wang H. P., Carbohydr. Polym.,2014, 101, 1043—1060 |
30 | Abe K., Iwamoto S., Yano H., Biomacromolecules,2007, 8(10), 3276—3278 |
31 | Wågberg L., Decher G., Norgren M., Lindström T., Ankerfors M., Axnäs K., Langmuir,2008, 24(3), 784—795 |
32 | Habibi Y., Chem. Soc. Rev.,2014, 43(5), 1519—1542 |
33 | Habibi Y., Lucia L. A., Rojas O. J., Chem. Rev.,2010, 110(6), 3479—3500 |
34 | Blanco Parte F. G., Santoso S. P., Chou C. C., Verma V., Wang H. T., Ismadji S., Cheng K. C., Crit. Rev. Biotechnol.,2020, 40(3), 397—414 |
35 | El⁃Saied H., Basta A. H., Gobran R. H., Polym. Plast. Technol.,2004, 43(3), 797—820 |
36 | Torres F. G., Commeaux S., Troncoso O. P., J. Funct. Biomater.,2012, 3(4), 864—78 |
37 | Ma L. N., Bi Z. J., Xue Y., Zhang W., Huang Q. Y., Zhang L. X., Huang Y. D., J. Mater. Chem. A,2020, 8(12), 5812—5842 |
38 | Cheng H., Li L. J., Wang B. J., Feng X. L., Mao Z. P., Vancso G. J., Sui X. F., Prog. Polym. Sci.,2020, 106, 101253 |
39 | Korhonen J. T., Kettunen M., Ras R. H. A., Ikkala O., ACS Appl. Mater. Interfaces,2011, 3(6), 1813—1816 |
40 | Fang Z. Q., Hou G. Y., Chen C. J., Hu L. B., Curr. Opin. Solid St. M.,2019, 23(4), 100764 |
41 | Toivonen M. S., Onelli O. D., Jacucci G., Lovikka V., Rojas O. J., Ikkala O., Vignolini S., Adv. Mater.,2018, 30(16), 1704050 |
42 | Han J., Zhou C., Wu Y., Liu F., Wu Q., Biomacromolecules,2013, 14(5), 1529—1540 |
43 | Larcher D., Tarascon J. M., Nat. Chem.,2015, 7(1), 19—29 |
44 | Armstrong R. C., Wolfram C., de Jong K. P., Gross R., Lewis N. S., Boardman B., Ragauskas A. J., Ehrhardt⁃Martinez K., Crabtree G., Ramana M. V., Nat. Energy,2016, 1(1), 15020 |
45 | Arico A. S., Bruce P., Scrosati B., Tarascon J. M., van Schalkwijk W., Nat. Mater.,2005, 4(5), 366—377 |
46 | Jin C., Nai J., Sheng O., Yuan H., Zhang W., Tao X., Lou D., Energy Environ. Sci.,2021, https://doi.org/10.1039/D0EE02848G |
47 | Yuan H., Liu T., Liu Y., Nai J., Wang Y., Zhang W., Tao X., Chem. Sci.,2019, 10(32), 7484—7495 |
48 | Xie W. G., Liu W. Y., Dang Y. P., Peng Y. J., Polym. Int.,2019, 68(7), 1341—1350 |
49 | Gwon H., Park K., Chung S. C., Kim R. H., Kang J. K., Ji S. M., Kim N. J., Lee S., Ku J. H., Do E. C., Park S., Kim M., Shim W. Y., Rhee H. S., Kim J. Y., Kim J., Kim T. Y., Yamaguchi Y., Iwamuro R., Saito S., Kim G., Jung I. S., Park H., Lee C., Lee S., Jeon W. S., Jang W. D., Kim H. U., Lee S. Y., Im D., Doo S. G., Lee S. Y., Lee H. C., Park J. H., Proc. Natl. Acad. Sci. USA,2019, 116(39), 19288—19293 |
50 | Zhao D. W., Chen C. J., Zhang Q., Chen W. S., Liu S. X., Wang Q. W., Liu Y. X., Li J., Yu H. P., Adv. Energy Mater.,2017, 7(18), 1700739 |
51 | Kim H., Guccini V., Lu H. R., Salazar⁃Alvarez G., Lindbergh G., Cornell A., ACS Appl. Energy Mater.,2019, 2(2), 1241—1250 |
52 | Lin C. E., Zhang H., Song Y. Z., Zhang Y., Yuan J. J., Zhu B. K., J. Mater. Chem. A,2018, 6(3), 991—998 |
53 | Zahn R., Lagadec M. F., Hess M., Wood V., ACS Appl. Mater. Interfaces,2016, 8(48), 32637—32642 |
54 | Xu Q., Wei C. Z., Fan L. L., Peng S., Xu W. L., Xu J., Cellulose,2017, 24(4), 1889—1899 |
55 | Polino G., Scaramella A., Manca V., Palmieri E., Tamburri E., Orlanducci S., Brunetti F., Energy Technol.,2020, 8(6), 1901233 |
56 | Li H., Wu D., Wu J., Dong L. Y., Zhu Y. J., Hu X., Adv. Mater.,2017, 29(44), 1703548 |
57 | Huang F. L., Xu Y. F., Peng B., Su Y. F., Jiang F., Hsieh Y. L., Wei Q. F., ACS Sustain. Chem. Eng.,2015, 3(5), 932—940 |
58 | Dong T. T., Zhang J. J., Xu G. J., Chai J. C., Du H. P., Wang L. L., Wen H. J., Zang X., Du A. B., Jia Q. M., Zhou X. H., Cui G. L., Energy Environ. Sci.,2018, 11(5), 1197—1203 |
59 | Pan R. J., Sun R., Wang Z. H., Lindh J., Edstrom K., Stromme M., Nyholm L., Energy Storage Mater.,2019, 21, 464—473 |
60 | Qu H., Zhang J., Du A., Chen B., Chai J., Xue N., Wang L., Qiao L., Wang C., Zang X., Yang J., Wang X., Cui G., Adv. Sci.,2018, 5(3), 1700503 |
61 | Zhang S. S., Inorg. Chem. Front.,2015, 2(12), 1059—1069 |
62 | Yu B. C., Park K., Jang J. H., Goodenough J. B., ACS Energy Lett.,2016, 1(3), 633—637 |
63 | Xie H., Yang C., Fu K. K., Yao Y., Jiang F., Hitz E., Liu B., Wang S., Hu L., Adv. Energy Mater.,2018, 8(18), 1703474 |
64 | Kuang Y. D., Chen C. J., Pastel G., Li Y. J., Song J. W., Mi R. Y., Kong W. Q., Liu B. Y., Jiang Y. Q., Yang K., Hu L. B., Adv. Energy Mater.,2018, 8(33), 1802398 |
65 | Liu N., Lu Z., Zhao J., McDowell M. T., Lee H. W., Zhao W., Cui Y., Nat. Nanotechnol.,2014, 9(3), 187—192 |
66 | Li S. H., Huang D. K., Zhang B. Y., Xu X. B., Wang M. K., Yang G., Shen Y., Adv. Energy Mater.,2014, 4(10), 1301655 |
67 | Li M., Du H., Kuai L., Huang K., Xia Y., Geng B., Angew. Chem. Int. Ed.,2017, 56(41), 12649—12653 |
68 | Wang H. W., Fu J. Z., Wang C., Wang J. Y., Yang A. K., Li C. C., Sun Q. F., Cui Y., Li H. Q., Energy Environ. Sci.,2020, 13(3), 848—858 |
69 | Zhou S., Kong X., Zheng B., Huo F., Strømme M., Xu C., ACS Nano,2019, 13(8), 9578—9586 |
70 | Hou M. J., Xu M. J., Hu Y. M., Li B., Electrochim. Acta,2019, 313, 245—254 |
71 | Lu H. R., Hagberg J., Lindbergh G., Cornell A., Nano Energy,2017, 39, 140—150 |
72 | Li L., Hou L., Cheng J., Simmons T., Zhang F., Zhang L. T., Linhardt R. J., Koratkar N., Energy Storage Mater.,2018, 15, 388—395 |
73 | Kang Y. J., Chun S. J., Lee S. S., Kim B. Y., Kim J. H., Chung H., Lee S. Y., Kim W., ACS Nano,2012, 6(7), 6400—6406 |
74 | Jiao S., Zhou A., Wu M., Hu H., Adv. Sci.,2019, 6(12), 1900529 |
75 | Lv Z., Luo Y., Tang Y., Wei J., Zhu Z., Zhou X., Li W., Zeng Y., Zhang W., Zhang Y., Qi D., Pan S., Loh X. J., Chen X., Adv. Mater.,2018, 30(2), 1704531 |
76 | Kim J. W., Park H., Lee G., Jeong Y. R., Hong S. Y., Keum K., Yoon J., Kim M. S., Ha J. S., Adv. Funct. Mater.,2019, 29(50), 1905968 |
77 | Thakur V. K., Voicu S. I., Carbohydr. Polym.,2016, 146, 148—165 |
78 | Voisin H., Bergström L., Liu P., P Mathew A., Nanomaterials,2017, 7, 57 |
79 | Cheng Q. Y., Ye D. D., Chang C. Y., Zhang L. N., J. Membr. Sci.,2017, 525, 1—8 |
80 | Wang G., He Y., Wang H., Zhang L. Y., Yu Q. Y., Peng S. S., Wu X. D., Ren T. H., Zeng Z. X., Xue Q. J., Green Chem.,2015, 17(5), 3093—3099 |
81 | Zhang Q. G., Deng C., Soyekwo F., Liu Q. L., Zhu A. M., Adv. Funct. Mater.,2016, 26(5), 792—800 |
82 | Hou D. X., Li T., Chen X., He S. M., Dai J. Q., Mofid S. A., Hou D. Y., Iddya A., Jassby D., Yang R. G., Hu L. B., Ren Z. J., Sci. Adv.,2019, 5(8), eaaw3203 |
83 | Karim Z., Claudpierre S., Grahn M., Oksman K., Mathew A. P., J. Membr. Sci.,2016, 514, 418—428 |
84 | Yang S. J., Wang T. H., Tang R., Yan Q. L., Tian W. Q., Zhang L. P., Int. J. Biol. Macromol.,2020, 151, 159—167 |
85 | Rohrbach K., Li Y. Y., Zhu H. L., Liu Z., Dai J. Q., Andreasen J. L., Hu L. B., Chem. Commun.,2014, 50(87), 13296—13299 |
86 | Li N., Zheng J., Hadi P., Yang M., Huang X., Ma H., Walker H. W., Hsiao B. S., Membranes,2019, 9(6), 70 |
87 | Shimizu M., Álvarez⁃Asencio R., Nordgren N., Uedono A., Cellulose,2019, 27(3), 1357—1365 |
88 | Abedini R., Mousavi S. M., Aminzadeh R., Desalination,2011, 277(1—3), 40—45 |
89 | Zhan H., Zuo T., Tao R. J., Chang C. Y., ACS Sustain. Chem. Eng.,2018, 6(8), 10833—10840 |
90 | Isogai A., Saito T., Fukuzumi H., Nanoscale,2011, 3(1), 71—85 |
91 | Zhu C. T., Liu P., Mathew A. P., ACS Appl. Mater. Interfaces,2017, 9(24), 21048—21058 |
92 | Xu T., Jiang Q. S., Ghim D., Liu K. K., Sun H. C., Derami H. G., Wang Z. Y., Tadepalli S., Jun Y. S., Zhang Q. H., Singamaneni S., Small,2018, 14(15), 1704006 |
93 | Xiong R., Kim H. S., Zhang S. D., Kim S., Korolovych V. F., Ma R. L., Yingling Y. G., Lu C. H., Tsukruk V. V., ACS Nano,2017, 11(12), 12008—12019 |
94 | Shang Y., Si Y., Raza A., Yang L., Mao X., Ding B., Yu J., Nanoscale,2012, 4(24), 7847 |
95 | Cheng R., Kang M., Zhuang S. T., Shi L., Zheng X., Wang J. L., J. Hazard. Mater.,2019, 364, 645—653 |
96 | d'Halluin M., Ru⁃Barrull J., Bretel G., Labrugere C., Le Grognec E., Felpin F. X., ACS Sustain. Chem. Eng.,2017, 5(2), 1965—1973 |
97 | Li Y., Wen Y. A., Wang L. H., He J. X., Al-Deyab S. S., El-Newehy M., Yu J. Y., Ding B., J. Mater. Chem. A,2015, 3(35), 18180—18189 |
98 | Chitpong N., Husson S. M., J. Membr. Sci.,2017, 523, 418—429 |
99 | Wu H., Wu L. H., Lu S. C., Lin X. X., Xiao H., Ouyang X. H., Cao S. L., Chen L. H., Huang L. L., Carbohydr. Polym.,2018, 181, 419—425 |
100 | Lukojko E., Talik E., Gagor A., Sitko R., Anal. Chim. Acta,2018, 1008, 57—65 |
101 | Yue X. J., Zhang T., Yang D. Y., Qiu F. X., Li Z. D., Zhu Y., Yu H. Q., J. Clean. Prod.,2018, 180, 307—315 |
102 | Zha X. J., Zhao X., Pu J. H., Tang L. S., Ke K., Bao R. Y., Bai L., Liu Z. Y., Yang M. B., Yang W., ACS Appl. Mater. Interfaces,2019, 11(40), 36589—36597 |
103 | Wang J. Q., Lu X. K., Ng P. F., Lee K. I., Fei B., Xin J. H., Wu J. Y., J. Colloid Interface Sci.,2015, 440, 32—38 |
104 | Goetz L. A., Jalvo B., Rosal R., Mathew A. P., J. Membr. Sci.,2016, 510, 238—248 |
105 | Ahn E., Kim T., Jeon Y., Kim B. S., ACS Nano,2020, 14(5), 6173—6180 |
106 | Arslan O., Aytac Z., Uyar T., ACS Appl. Mater. Interfaces,2016, 8(30), 19747—19754 |
107 | Choi H. Y., Bae J. H., Hasegawa Y., An S., Kim I. S., Lee H., Kim M., Carbohydr. Polym.,2020, 234, 115881 |
108 | Lu X. L., Feng X. D., Yang Y., Jiang J., Cheng W., Liu C. H., Gopinadhan M., Osuji C. O., Ma J., Elimelech M., Nat. Commun.,2019, 10(1), 2347 |
109 | Zhou K., Zhang Q. G., Li H. M., Guo N. N., Zhu A. M., Liu Q. L., Nanoscale,2014, 6(17), 10363—10369 |
110 | Wang J. J., Yang H. C., Wu M. B., Zhang X., Xu Z. K., J. Mater. Chem. A,2017, 5(31), 16289—16295 |
111 | Yang H., Yang L. X., Wang H. J., Xu Z., Zhao Y. M., Luo Y., Nasir N., Song Y. M., Wu H., Pan F. S., Jiang Z. Y., Nat. Commun.,2019, 10(1), 2101 |
112 | Bai L. M., Liu Y. T., Ding A., Ren N. Q., Li G. B., Liang H., Chem. Eng. J.,2019, 358, 1519—1528 |
113 | Li X., Wang K. Y., Helmer B., Chung T. S., Ind. Eng. Chem. Res.,2012, 51(30), 10039—10050 |
114 | Cruz⁃Tato P., Ortiz⁃Quiles E. O., Vega⁃Figueroa K., Santiago⁃Martoral L., Flynn M., Diaz⁃Vazquez L. M., Nicolau E., Environ. Sci. Technol.,2017, 51(8), 4585—4595 |
115 | Kong J. F., Zhu Y. C., Jin J., Chem. J. Chinese Universities, 2020, 41(4), 690—696 (孔金凤, 朱玉长, 靳健. 高等学校化学学报, 2020, 41(4), 690—696) |
116 | Wang X., Yeh T. M., Wang Z., Yang R., Wang R., Ma H. Y., Hsiao B. S., Chu B., Polymer,2014, 55(6), 1358—1366 |
117 | Xiong R., Kim H. S., Zhang L., Korolovych V. F., Zhang S., Yingling Y. G., Tsukruk V. V., Angew. Chem. Int. Ed.,2018, 57(28), 8508—8513 |
118 | Karim Z., Mathew A. P., Grahn M., Mouzon J., Oksman K., Carbohydr. Polym.,2014, 112, 668—676 |
119 | Lalia B. S., Guillen E., Arafat H. A., Hashaikeh R., Desalination,2014, 332(1), 134—141 |
120 | Gopakumar D. A., Pasquini D., Henrique M. A., de Morais L. C., Grohens Y., Thomas S., ACS Sustain. Chem. Eng.,2017, 5(2), 2026—2033 |
121 | Kumar M., RaoT S., Isloor A. M., Ibrahim G. P. S., Inamuddin, Ismail N., Ismail A. F., Asiri A. M., Int. J. Biol. Macromol.,2019, 129, 715—727 |
122 | Xiong Y., Xu L., Nie K., Jin C., Sun Q., Xu X., Langmuir,2019, 35(34), 11071—11079 |
123 | Mahfoudhi N., Boufi S., Cellulose,2017, 24(3), 1171—1197 |
124 | Olivera S., Muralidhara H. B., Venkatesh K., Guna V. K., Gopalakrishna K., Kumar K. Y., Carbohydr. Polym.,2016, 153, 600— 618 |
125 | Jiang Q., Tian L., Liu K. K., Tadepalli S., Raliya R., Biswas P., Naik R. R., Singamaneni S., Adv. Mater.,2016, 28(42), 9400—9407 |
126 | Song J., Chen C., Zhu S., Zhu M., Dai J., Ray U., Li Y., Kuang Y., Li Y., Quispe N., Yao Y., Gong A., Leiste U. H., Bruck H. A., Zhu J. Y., Vellore A., Li H., Minus M. L., Jia Z., Martini A., Li T., Hu L., Nature,2018, 554(7691), 224—228 |
127 | Chen F. J., Gong A. S., Zhu M. W., Chen G., Lacey S. D., Jiang F., Li Y. F., Wang Y. B., Dai J. Q., Yao Y. G., Song J. W., Liu B. Y., Fu K., Das S., Hu L. B., ACS Nano,2017, 11(4), 4275—4282 |
128 | Jia C., Li Y. J., Yang Z., Chen G., Yao Y. G., Jiang F., Kuang Y. D., Pastel G., Xie H., Yang B., Das S., Hu L. B., Joule,2017, 1(3), 588—599 |
129 | Li T., Liu H., Zhao X. P., Chen G., Dai J. Q., Pastel G., Jia C., Chen C. J., Hitz E., Siddhartha D., Yang R. G., Hu L. B., Adv. Funct. Mater.,2018, 28(16), 1707134 |
130 | Kuang Y. D., Chen C. J., He S. M., Hitz E. M., Wang Y. L., Gan W. T., Mi R. Y., Hu L. B., Adv. Mater.,2019, 31(23), 1900498 |
131 | Zhu H., Luo W., Ciesielski P. N., Fang Z., Zhu J. Y., Henriksson G., Himmel M. E., Hu L., Chem. Rev.,2016, 116(16), 9305—9374 |
132 | Lagadec M. F., Zahn R., Wood V., Nat. Energy,2019, 4(1), 16—25 |
133 | Eder M., Amini S., Fratzl P., Science,2018, 362(6414), 543—547 |
[1] | YAO Qing, YU Zhiyong, HUANG Xiaoqing. Progress in Synthesis and Energy-related Electrocatalysis of Single-atom Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220323. |
[2] | TANG Quanjun, LIU Yingxin, MENG Rongwei, ZHANG Ruotian, LING Guowei, ZHANG Chen. Application of Single-atom Catalysis in Marine Energy [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220324. |
[3] | GUO Cheng, ZHANG Wei, TANG Yun. Ordered Mesoporous Materials: History, Progress and Perspective [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220167. |
[4] | QIU Xinsheng, WU Qin, SHI Daxin, ZHANG Yaoyuan, CHEN Kangcheng, LI Hansheng. Preparation and High Temperature Fuel Cell Performance of Ionic Crosslinked Sulfonated Polyimides for Proton Exchange Membranes [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220140. |
[5] | LI Lin, QI Fenglian, QIU Lili, MENG Zihui. Dynamic Amorphous Photonic Structure Patterns Assembled by Hexagonal Magnetic Nanosheets [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220123. |
[6] | WU Yushuai, SHANG Yingxu, JIANG Qiao, DING Baoquan. Research Progress of Controllable Self-assembled DNA Origami Structure as Drug Carrier [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220179. |
[7] | XIA Wu, REN Yingyi, LIU Jing, WANG Feng. Chitosan Encapsulated CdSe QDs Assemblies for Visible Light-induced CO2 Reduction in an Aqueous Solution [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220192. |
[8] | QIU Liqi, YAO Xiangyang, HE Liangnian. Visible-light-driven Selective Reduction of Carbon Dioxide Catalyzed by Earth-abundant Metalloporphyrin Complexes [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220064. |
[9] | JIANG Hongbin, DAI Wenchen, ZHANG Rao, XU Xiaochen, CHEN Jie, YANG Guang, YANG Fenglin. Research on Co3O4/UiO-66@α-Al2O3 Ceramic Membrane Separation and Catalytic Spraying Industry VOCs Waste Gas [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220025. |
[10] | WU Jun, HE Guanchao, FEI Huilong. Self-supported Film Electrodes Decorated with Single Atoms for Energy Electrocatalysis [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220051. |
[11] | CHEN Zhaoyang, XUE Yurui, LI Yuliang. Synthesis and Applications of Graphdiyne Based Zerovalent Atomic Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220063. |
[12] | LUO Bian, ZHOU Fen, PAN Mu. Study on Preparation and Accessibility of Hierarchical Porous Carbon Supported Platinum Catalyst [J]. Chem. J. Chinese Universities, 2022, 43(4): 20210853. |
[13] | WANG Jianqiao, MA Yuguang. Extent and Changeable Rule of HOMO and LUMO Energy of Organic Semiconductors in Nonequilibrium States and a Phenomenological Understanding for the Formation of “Hot Excitons” in OLED [J]. Chem. J. Chinese Universities, 2022, 43(4): 20210856. |
[14] | CUI Shaoli, ZHANG Weijia, SHAO Xueguang, CAI Wensheng. Revealing the Effect of Threonine on the Binding Ability of Antifreeze Proteins with Ice Crystals by Free-energy Calculations [J]. Chem. J. Chinese Universities, 2022, 43(3): 20210838. |
[15] | LI Hua, YANG Ke, HUANG Junfeng, CHEN Fengjuan. Design and Construction of UiO-66-NH2/wood Composite for Efficient Removal of Trace Heavy Metal Ions from Water [J]. Chem. J. Chinese Universities, 2022, 43(3): 20210701. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||