Chem. J. Chinese Universities ›› 2022, Vol. 43 ›› Issue (8): 20220167.doi: 10.7503/cjcu20220167
• Review • Previous Articles Next Articles
GUO Cheng1, ZHANG Wei1,2(), TANG Yun1(
)
Received:
2022-03-20
Online:
2022-08-10
Published:
2022-05-11
Contact:
ZHANG Wei,TANG Yun
E-mail:w_zhang@fudan.edu.cn;yuntang@fudan.edu.cn
Supported by:
CLC Number:
TrendMD:
GUO Cheng, ZHANG Wei, TANG Yun. Ordered Mesoporous Materials: History, Progress and Perspective[J]. Chem. J. Chinese Universities, 2022, 43(8): 20220167.
1 | Kitagawa S., Acc. Mater. Res., 2017, 50(3), 514—516 |
2 | Liu P., Chen G. F., Porous Materials: Processing and Applications, Elsevier, Amsterdam, 2014 |
3 | Kitagawa S., Porous Materials and the Age of Gas, Wiley Online Library, 2015, 54, 10686—10687 |
4 | Ryoo R., Nature, 2019, 575, 40—41 |
5 | Ciesla U., Schüth F., Micropor. Mesopor. Mater., 1999, 27(2/3), 131—149 |
6 | Suib S. L., Chem. Rev., 2017, 17(12), 1169—1183 |
7 | Linares N., Silvestre⁃Albero A. M., Serrano E., Silvestre⁃Albero J., García⁃Martínez J., Chem. Soc. Rev., 2014, 43(22), 7681—7717 |
8 | Perego C., Millini R., Chem. Soc. Rev., 2013, 42(9), 3956—3976 |
9 | Kresge C., Leonowicz M., Roth W. J., Vartuli J., Beck J., Nature, 1992, 359(6397), 710—712 |
10 | Duan L., Wang C., Zhang W., Ma B., Deng Y., Li W., Zhao D., Chem. Rev., 2021, 121(23), 14349—14429 |
11 | Zhao T., Chen L., Lin R., Zhang P., Lan K., Zhang W., Li X., Zhao D., Acc. Mater. Res., 2020, 1(1), 100—114 |
12 | Zu L., Zhang W., Qu L., Liu L., Li W., Yu A., Zhao D., Adv. Energy Mater., 2020, 10(38), 2002152 |
13 | Lu Y., Ganguli R., Drewien C. A., Anderson M. T., Brinker C. J., Gong W., Guo Y., Soyez H., Dunn B., Huang M. H., Nature, 1997, 389(6649), 364—368 |
14 | Zhao D., Feng J., Huo Q., Melosh N., Fredrickson G. H., Chmelka B. F., Stucky G. D., Science, 1998, 279(5350), 548—552 |
15 | Yang P., Zhao D., Margolese D. I., Chmelka B. F., Stucky G. D., Nature, 1998, 396(6707), 152—155 |
16 | Yang P., Deng T., Zhao D., Feng P., Pine D., Chmelka B. F., Whitesides G. M., Stucky G. D., Science, 1998, 282(5397), 2244—2246 |
17 | Ryoo R., Joo S. H., Jun S., J. Phys. Chem. B, 1999, 103(37), 7743—7746 |
18 | Han S., Hyeon T., Chem. Commun., 1999, 35(19), 1955—1956 |
19 | Asefa T., MacLachlan M., Coombs N., Ozin G. A., Nature, 1999, 402(6764), 867—871 |
20 | Eddaoudi M., Kim J., Rosi N., Vodak D., Wachter J., O’Keeffe M., Yaghi O., Science, 2002, 295(5554), 469—472 |
21 | Tian B., Liu X., Tu B., Yu C., Fan J., Wang L. Xie S., Stucky G. D., Zhao D., Nat. Mater., 2003, 2(3), 159—163 |
22 | Meng Y., Gu D., Zhang F., Shi Y.,Yang H., Li Z. Yu C., Tu B., Zhao D., Angew. Chem. Int. Ed., 2005, 44(43), 7053—7059 |
23 | Lee J., Christopher Orilall M., Warren S. C., Kamperman M., Disalvo F. J., Wiesner U., Nat. Mater., 2008, 7(3), 222—228 |
24 | Fang Y., Hu H., J. Am. Chem. Soc., 2006, 128(33), 10636—10637 |
25 | Zhao Y., Zhang J., Han B., Song J., Li J., Wang Q., Angew. Chem. Int. Ed., 2011, 50(3), 636—639 |
26 | Na K., Jo C., Kim J., Cho K., Jung J., Seo Y., Messinger R. J., Chmelka B. F., Ryoo R., Science, 2011, 333(6040), 328—332 |
27 | Fang Y., Lv Y., Che R., Wu H., Zhang X., Gu D., Zheng G., Zhao D., J. Am. Chem. Soc., 2013, 135(4), 1524—1530 |
28 | Zhao Z., Wang X., Jing X., Zhao Y., Lan K., Zhang W., Duan L., Guo D., Wang C., Peng L., Zhang X., An Z., Li W., Nie Z., Fan C., Zhao. D., Adv. Mater., 2021, 33(23), 2100820 |
29 | Li W., Zhao D., Chem. Commun., 2013, 49(10), 943—946 |
30 | Yanagisawa T., Shimizu T., Kuroda K., Kato C., Bull. Chem. Soc. Jpn., 1990, 63(4), 988—992 |
31 | Liu Y., Goebl J., Yin Y., Chem. Soc. Rev., 2013, 42(7), 2610—2653 |
32 | Malgras V., Ji Q., Kamachi Y., Mori T., Shieh F. K., Wu K. C. W., Ariga K., Yamauchi Y., Bull. Chem. Soc. Jpn., 2015, 88(9), 1171—1200 |
33 | Zhang Q., Wang W., Goebl J., Yin Y., Nano Today, 2009, 4(6), 494—507 |
34 | Xiao X., Song H., Lin S., Zhou Y., Zhan X., Hu Z., Zhang Q., Sun J., Yang B., Li T., Nat. Commun., 2016, 7(1), 1—8 |
35 | Ogawa M., Chem. Commun., 1996, 32(10), 1149—1150 |
36 | Inagaki S., Fukushima Y., Kuroda K., Chem. Commun., 1993, 29(8), 680—682 |
37 | Wan Y., Zhao D., Chem. Rev., 2007, 107(7), 2821—2860 |
38 | Zhao D., Yang P., Huo Q., Curr. Opin. Solid St. M., 1998, 3(1), 111—121 |
39 | Olkhovyk O., Jaroniec M., J. Am. Chem. Soc., 2005, 127(1), 60—61 |
40 | Hoffmann F., Froba M., Chem. Soc. Rev., 2011, 40(2), 608—620 |
41 | Wan Y., Shi Y., Zhao D., Chem. Commun., 2007, 43(9), 897—926 |
42 | Wan Y., Shi Y., Zhao D., Chem. Mater., 2008, 20(3), 932—945 |
43 | Zhou W., Hunter H. M., Wright P. A., Ge Q., Thomas J. M., J. Phys. Chem. B, 1998, 102(36), 6933—6936 |
44 | Göltner C., Weissenberger M., Acta Polym., 1998, 49(12), 704—709 |
45 | Shi Y., Wan Y., Tu B., Zhao D., J. Phys. Chem. C, 2008, 112(1), 112—116 |
46 | Shi Y., Wan Y., Liu R., Tu B., Zhao D., J. Am. Chem. Soc., 2007, 129(30), 9522—9531 |
47 | Lu A. H., Schüth F., Adv. Mater., 2006, 18(14), 1793—1805 |
48 | Yang H., Zhao D., J. Mater. Chem., 2005, 15(12), 1217—1231 |
49 | Zhang X., Weng W., Gu H., Hong Z., Xiao W., Wang F., Li W., Gu D., Adv. Mater., 2022, 34(2), 2104427 |
50 | Xiong Y., Gu D., Deng X., Tüysüz H., van Gastel M., Schüth F., Marlow F., Micropor. Mesopor. Mater., 2018, 268, 162—169 |
51 | Gu D., Schmidt W., Pichler C. M., Bongard H. J., Spliethoff B., Asahina S., Cao Z., Terasaki O., Schüth F., Angew. Chem. Int. Ed., 2017, 56(37), 11222—11225 |
52 | Shi Y., Wan Y., Zhai Y., Liu R., Meng Y., Tu B., Zhao D., Chem. Mater., 2007, 19(7), 1761—1771 |
53 | Zhao D., Sun J., Li Q., Stucky G. D., Chem. Mater., 2000, 12(2), 275—279 |
54 | Melde B. J., Holland B. T., Blanford C. F., Stein A., Chem. Mater., 1999, 11(11), 3302—3308 |
55 | Asefa T., MacLachlan M. J., Coombs N., Ozin G. A., Nature, 1999, 402(6764), 867—871 |
56 | Zou Y., Zhou X., Ma J., Yang X., Deng Y., Chem. Soc. Rev., 2020, 49(4), 1173—1208 |
57 | Li Y., Luo W., Qin N., Dong J., Wei J., Li W., Feng S., Chen J., Xu J., Elzatahry A. A., Angew. Chem. Int. Ed., 2014, 126(34), 9181—9186 |
58 | Luo W., Li Y., Dong J., Wei J., Xu J., Deng Y., Zhao D., Angew. Chem. Int. Ed., 2013, 125(40), 10699—10704 |
59 | Szczęśniak B., Choma J., Jaroniec M., Chem. Commun., 2020, 56(57), 7836—7848 |
60 | Jang J., Bae J., Chem. Commun., 2005, 41(9), 1200—1202 |
61 | Lee K. T., Oh S. M., Chem. Commun., 2002, 38(22), 2722—2723 |
62 | Tanaka S., Nishiyama N., Egashira Y., Ueyama K., Chem. Commun., 2005, 41(16), 2125—2127 |
63 | Liu J., Wickramaratne N. P., Qiao S. Z., Jaroniec M, Nat. Mater., 2015, 14(8), 763—774 |
64 | Zhong M., Kim E. K., McGann J. P., Chun S. E., Whitacre J. F., Jaroniec M., Matyjaszewski K., Kowalewski T., J. Am. Chem. Soc., 2012, 134(36), 14846—14857 |
65 | Liang C., Dai S., J. Am. Chem. Soc., 2006, 128(16), 5316—5317 |
66 | Zhang F., Meng Y., Gu D., Yan Y., Yu C., Tu B., Zhao D., J. Am. Chem. Soc., 2005, 127(39), 13508—13509 |
67 | Peng L., Hung C. T., Wang S., Zhang X., Zhu X., Zhao Z., Wang C., Tang Y., Li W., Zhao D., J. Am. Chem. Soc., 2019, 141(17), 7073—7080 |
68 | Fang Y., Gu D., Zou Y., Wu Z., Li F., Che R., Deng Y., Tu B., Zhao D., Angew. Chem. Int. Ed., 2010, 49(43), 7987—7991 |
69 | Li W., Zhang F., Dou Y., Wu Z., Liu H., Qian X., Gu D., Xia Y., Tu B., Zhao, D., Adv. Energy Mater., 2011, 1(3), 382—386 |
70 | Zhang P., Wang L., Yang S., Schott J. A., Liu X., Mahurin S. M., Huang C., Zhang Y., Fulvio P. F., Chisholm M. F., Dai S., Nat. Commun., 2017, 8(1), 1—10 |
71 | Liu D., Zou D., Zhu H., Zhang J., Small, 2018, 14(37), 1801454 |
72 | Li K., Yang J., Huang R., Lin S.,Gu. J., Angew. Chem. Int. Ed., 2020, 132(33), 14124—14128 |
73 | Yang J., Li K., Li C., Gu J., Angew. Chem. Int. Ed., 2020, 132(51), 22952—22956 |
74 | Li K., Zhao Y., Yang J., Gu J., Nat. Commun., 2022, 13(1),1—8 |
75 | Korde A., Min B., Kapaca E., Knio O., Nezam I., Wang Z., Leisen J., Yin X., Zhang X., Sholl D.S., Zou X., Willhammar T., Jones C. W., Nair S., Science, 2022, 375(6576), 62—66 |
76 | Lin Q. F., Gao Z. R., Lin C., Zhang S. Y., Chen J. F., Li Z. Q., Liu X. L., Fan W., Li J., Chen X. B., Camblor M. A., Chen F. J., Science, 2021, 374(6575), 1605—1608 |
77 | Zhao T., Elzatahry A., Li X., Zhao D., Nat. Rev. Mater., 2019, 4(12), 775—791 |
78 | Lan K., Xia Y., Wang R., Zhao Z., Zhang W., Zhang X., Elzatahry A., Zhao D., Matter, 2019, 1(2), 527—538 |
79 | Lan K., Liu Y., Zhang W., Liu Y., Elzatahry A., Wang R., Xia Y., Al-Dhayan D., Zheng N., Zhao D., J. Am. Chem. Soc., 2018, 140(11), 413—4143 |
80 | Liu L., Yang X. Xie Y., Liu H., Zhou X., Xiao X., Ren Y., Ma Z., Cheng X., Deng Y., Adv. Mater., 2020, 32(10), 1906653 |
81 | Wu Y., Zhang Y., Zhou J., Gu D., Emergent Mater., 2020, 3(3), 247—266 |
82 | Li W., Liu J., Zhao D., Nat. Rev. Mater., 2016, 1(6), 1—17 |
83 | Zhang W., Zhu K., Ren W., He H., Liang H., Zhai Y., Li W., Adv. Mater. Interfaces, 2022, 9(3), 2101528 |
84 | Li C., Li Q., Kaneti Y. V., Hou D., Yamauchi Y., Mai Y., Chem. Soc. Rev., 2020, 49(14), 4681—4736 |
85 | Qian X., Xiong D., Asiri A. M., Khan S. B., Rahman M. M., Xu H., Zhao D., J. Mater. Chem. A, 2013, 1(25), 7525—7532 |
86 | Lv Y., Qian X., Tu B., Zhao D., Catal. Today, 2013, 204, 2—7 |
87 | Qian X., Li B., Hu Y. Y., Niu G. X., Deng Y., Che R., Tang Y., Su D., Asiri A. M., Zhao D. Y., Chem. Eur. J., 2012, 18(3), 931—939 |
88 | Qian X., Du J., Li B., Si M., Yang Y., Hu Y., Niu G., Zhang Y., Xu H., Tu B., Chem. Sci., 2011, 2(10), 2006—2016 |
89 | Zhou W., Li W., Wang J. Q., Qu Y., Yang Y., Xie Y.,Zhang K., Wang L., Fu H., Zhao D., J. Am. Chem. Soc., 2014, 136(26), 9280—9283 |
90 | Ismail A. A., Bahnemann D. W., J. Mater. Chem., 2011, 21(32), 11686—11707 |
91 | Zhang W., Tian Y., He H., Xu L., Li W., Zhao D., Natl. Sci. Rev., 2020, 7(11), 1702—1725 |
92 | Zhang W., He H., Li H., Duan L., Zu L., Zhai Y., Li W., Wang L., Fu H., Zhao D., Adv. Energy Mater., 2021, 11(15), 2003303 |
93 | Ide Y., Inami N., Hattori H., Saito K., Sohmiya M., Tsunoji N., Komaguchi K., Sano T., Bando Y., Golberg D., Angew. Chem. Int. Ed., 2016, 55(11), 3600—3605 |
94 | Zhang J., Xu Q., Feng Z., Li M., Li C., Angew. Chem. Int. Ed., 2008, 120(9), 1790—1793 |
95 | Liu G., Yan X., Chen Z., Wang X., Wang L., Lu G. Q., Cheng H. M., J. Mater. Chem., 2009, 19(36), 6590—6596 |
96 | Kawahara T., Konishi Y., Tada H., Tohge N., Nishii J., Ito S., Angew. Chem.Int. Ed., 2002, 114(15), 2935—2937 |
97 | Zhang W., He H., Tian Y., Lan K., Liu Q., Wang C., Liu Y., Elzatahry A., Che R., Li W., Zhao D., Chem. Sci., 2019, 10(6), 1664—1670 |
98 | Liu X., Zhu G., Wang X., Yuan X., Lin T., Huang F., Adv. Energy Mater., 2016, 6(17), 1600452 |
99 | Chen X., Liu L., Huang F., Chem. Soc. Rev., 2015, 44(7), 1861—1885 |
100 | Chen X., Liu L., Yu P. Y., Mao S. S., Science, 2011, 331(6018), 746—750 |
101 | Wang Z., Yang C., Lin T., Yin H., Chen P., Wan D., Xu F., Huang F., Lin J., Xie X., Jiang M., Energy Environ. Sci., 2013, 6(10), 3007—3014 |
102 | Zhang W., He H., Tian Y., Li H., Lan K., Zu L., Xia Y., Duan L., Li W., Zhao D., Nano Energy, 2019, 66, 104113 |
103 | Walcarius A., Chem. Soc. Rev., 2013, 42(9), 4098—4140 |
104 | Kim H., Seo M., Park M. H., Cho J., Angew. Chem. Int. Ed., 2010, 49(12), 2146—2149 |
105 | Liu N., Lu Z., Zhao J., McDowell M. T., Lee H. W., Zhao W., Cui Y., Nat. Nanotechnol., 2014, 9(3), 187—192 |
106 | Zhang R., Du Y., Li D., Shen D., Yang J., Guo Z., Liu H. K., Elzatahry A. A., Zhao D., Adv. Mater., 2014, 26(39), 6749—6755 |
107 | Luo W., Chen X., Xia Y., Chen M., Wang L., Wang Q., Li W., Yang J., Adv. Energy Mater., 2017, 7(24), 1701083 |
108 | Yang J., Wang Y. X., Chou S. L., Zhang R., Xu Y., Fan J., Zhang W.X., Liu H. K., Zhao D., Dou S. X., Nano Energy, 2015, 18, 133—142 |
109 | Wang J., Xia Y., Liu Y., Li W., Zhao D., Energy Storage Mater., 2019, 22, 147—153 |
110 | Lan K., Liu L., Zhang J. Y., Wang R., Zu L., Lv Z., Wei Q., Zhao D., J. Am. Chem. Soc., 2021, 143(35), 14097—14105 |
111 | Wang J., Liu Y., Cai Q., Dong A., Yang D., Zhao D., Adv. Mater., 2022, 34(3), 2107957 |
112 | Zhao T., Nguyen N. T., Xie Y., Sun X., Li Q., Li X., Front. Chem., 2017, 5, 118 |
113 | Möller K., Bein T., Chem. Mater., 2017, 29(1), 371—388 |
114 | Manzano M., Vallet⁃Regí M., Adv. Funct. Mater., 2020, 30(2), 1902634 |
115 | Tang F., Li L., Chen D., Adv. Mater., 2012, 24(12), 1504—1534 |
116 | Chen W., Glackin C. A., Horwitz M. A., Zink J. I., Acc. Mater. Res., 2019, 52(6), 1531—1542 |
117 | Danhier F., Ansorena E., Silva J. M., Coco R., Le Breton A., Préat V., J. Control. Release, 2012, 161(2), 505—522 |
118 | Wang S., Micropor. Mesopor. Mater., 2009, 117(1), 1—9 |
119 | García⁃Fernández A., Aznar E., Martínez⁃Máñez R., Sancenón F., Small, 2020, 16(3), 1902242 |
120 | Castillo R. R., Lozano D., González B., Manzano M., Izquierdo⁃Barba I., Vallet⁃Regí M., Expert Opin. Drug Del., 2019, 16(4), 415—439 |
121 | Kankala R. K., Han Y. H., Na J., Lee C. H., Sun Z., Wang S. B., Kimura T., Ok Y. S., Yamauchi Y., Chen A. Z., Wu K. C. W., Adv. Mater., 2020, 32(23), 1907035 |
122 | Yang B., Zhou S., Zeng J., Zhang L., Zhang R., Liang K., Xie L., Shao B., Song S., Huang G., Zhao D., Chen P., Kong B., Nano Res., 2020, 13(4), 1013—1019 |
123 | Lee J. E., Lee N., Kim T., Kim J., Hyeon T., Acc. Mater. Res., 2011, 44(10), 893—902 |
124 | Chen L., Liu M., Zhou Q., Li X., Emergent Mater., 2020, 3(3), 381—405 |
125 | Yao C., Wang P., Li X., Hu X., Hou J., Wang L., Zhang F., Adv. Mater., 2016, 28(42), 9341—9348 |
126 | Liu J. N., Bu W. B., Shi J. L., Acc. Chem. Res., 2015, 48(7), 1797—1805 |
127 | Kim J., Kim H. S., Lee N., Kim T., Kim H., Yu T., Song I. C., Moon W. K., Hyeon T., Angew. Chem. Int. Ed., 2008, 120(44), 8566—8569 |
128 | Zhao T., Chen L., Li Q., Li X., J. Mater. Chem. B, 2018, 6(44), 7112—7121 |
129 | Huo M., Wang L., Wang Y., Chen Y., Shi J., ACS Nano, 2019, 13(2), 2643—2653 |
130 | Quail D. F., Joyce J. A., Nat. Med., 2013, 19(11), 1423—1437 |
131 | Nguyen T. L., Choi Y., Kim J., Adv. Mater., 2019, 31(34), 1803953 |
132 | Luo W., Zhao T., Li Y., Wei J., Xu P., Li X., Wang Y., Zhang W., Elzatahry A. A., Alghamdi, A., Deng Y., Wang L., Jiang W., Liu Y., Kong B., Zhao D., J. Am. Chem. Soc., 2016, 138(38), 12586—12595 |
133 | Wagner T., Haffer S., Weinberger C., Klaus D., Tiemann M., Chem. Soc. Rev., 2013, 42(9), 4036—4053 |
134 | Zou Y., Zhou X., Zhu Y., Cheng X., Zhao D., Deng Y., Acc. Chem. Res., 2019, 52(3), 714—725 |
135 | Zhou X., Cheng X., Zhu Y., Elzatahry A. A., Alghamdi A., Deng Y., Zhao D., Chin. Chem. Lett., 2018, 29(3), 405—416 |
136 | Zhu Y., Zhao Y., Ma J., Cheng X., Xie J., Xu P., Liu H., Liu H., Zhang H., Wu M., J. Am. Chem. Soc., 2017, 139(30), 10365—10373 |
137 | Ren Y., Zou Y., Liu Y., Zhou X., Ma J., Zhao D., Wei G., Ai Y., Xi S., Deng Y., Nat. Mater., 2020, 19(2), 203—211 |
138 | Ren Y., Xie W., Li Y., Ma J., Li J., Liu Y., Zou Y., Deng Y., ACS Central Sci., 2021, 7(11), 1885—1897 |
139 | Villasmil W., Fischer L. J., Worlitschek J., Renew. Sust. Energ. Rev., 2019, 103, 71—84 |
140 | Zhang X., Ni X., Li C., You B., Sun G., J. Mater. Chem. A, 2020, 8(19), 9701—9712 |
141 | Ghedini E., Menegazzo F., Manzoli M., Di Michele A., Puglia D., Signoretto M., Molecules, 2019, 24(23), 4226 |
142 | Ha T. J., Park H. H., Jang H. W., Yoon S. J., Shin S., Cho H. H., Micropor. Mesopor. Mater., 2012, 158, 123—128 |
143 | Gu W., Sheng J., Huang Q., Wang G., Chen J., Ji G., Nano⁃Micro Lett., 2021, 13(1), 1—14 |
144 | Shioura N., Matsushima K., Osato T., Ueno T., Isu, N., Hashimoto T., Yana T., MRS Adv., 2020, 5(34), 1791—1798 |
[1] | JIANG Bowen, CHEN Jingxuan, CHENG Yonghua, SANG Wei, KOU Zongkui. Recent Progress of Single-atom Materials in Electrochemical Biosensing [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220334. |
[2] | LU Cong, LI Zhenhua, LIU Jinlu, HUA Jia, LI Guanghua, SHI Zhan, FENG Shouhua. Synthesis, Structure and Fluorescence Detection Properties of a New Lanthanide Metal-Organic Framework Material [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220037. |
[3] | MA Jianxin, LIU Xiaodong, XU Na, LIU Guocheng, WANG Xiuli. A Multi-functional Zn(II) Coordination Polymer with Luminescence Sensing, Amperometric Sensing, and Dye Adsorption Performance [J]. Chem. J. Chinese Universities, 2022, 43(1): 20210585. |
[4] | WU Ji, ZHANG Hao, LUO Yuhui, GENG Wuyue, LAN Yaqian. A Microporous Cationic Ga(III)-MOF with Fluorescence Properties for Selective sensing Fe3+ Ion and Nitroaromatic Compounds [J]. Chem. J. Chinese Universities, 2022, 43(1): 20210617. |
[5] | JIANG Jun, GONG Tiantian, ZHANG Chengpeng, LIU Xiaoqian, ZHAO Junwei. Synthesis and Electrochemical Biosensing Properties of Pyridine Dicarboxylic Acid Decorated Rare-earth-incorporatedTellurotungstates [J]. Chem. J. Chinese Universities, 2022, 43(1): 20210561. |
[6] | LI Ran, ZHANG Xudong, MU Lidan, SUN Tong, AI Ganggang, SHA Yelong, ZHANG Yuqi, WANG Jijiang. Preparation and Application of Triplethiophene Derivative Functionalized SiO2 Inverse Opal Photonic Crystal Fluorescent Films [J]. Chem. J. Chinese Universities, 2021, 42(9): 2989. |
[7] | JI Shaobo, CHEN Xiaodong. Surface and Interface Chemistry in Flexible Electronics [J]. Chem. J. Chinese Universities, 2021, 42(4): 1074. |
[8] | WANG Qing, HE Yuqiu, WANG Fuan. Advances of Multifunctional Deoxyribozyme in Biomedical Analysis [J]. Chem. J. Chinese Universities, 2021, 42(11): 3334. |
[9] | XI Jing, CHEN Na, YANG Yanbing, YUAN Quan. Recent Progress in Controlled Synthesis of Persistent Luminescence Nanomaterials for Diagnosis Applications [J]. Chem. J. Chinese Universities, 2021, 42(11): 3247. |
[10] | SUN Hui, LAI Xiaoyong. Progress in Preparation and Gas-sensing Application of Hollow Multi-shell Structured Materials [J]. Chem. J. Chinese Universities, 2020, 41(5): 855. |
[11] | FU Kefei, LIAN Huiting, WEI Xiaofeng, SUN Xiangying, LIU Bin. Construction of Cyclodextrin-based Impedance Sensor for Recognition of L-Cysteine † [J]. Chem. J. Chinese Universities, 2020, 41(4): 706. |
[12] | XIAN Guoxuan, YU Yu’e, CHEN Yuqian, WAN Xiaoyu, WANG Suna, LU Jing. Coligand Induced Luminescent Cd-MOFs: Luminescence Enhancement Toward Acetylacetone and Quenching Toward Cr2O72- [J]. Chem. J. Chinese Universities, 2020, 41(12): 2725. |
[13] | LI Huiyuan, LEI Chunyang, HUANG Yan, NIE Zhou. Structural Modification of Fluorescent Proteins and Their Applications in Biosensing [J]. Chem. J. Chinese Universities, 2020, 41(11): 2324. |
[14] | ZHOU Hai, CHEN Hao, GUO Ya, KANG Min. Synthesis of Meso-porous Co3O4 Polyhedra and Their Electrochemical Properties† [J]. Chem. J. Chinese Universities, 2019, 40(7): 1374. |
[15] | PAN Shuai, HU Xiaobing, SONG Runmin, XIE Lili, ZHU Zhigang, ZHENG Liaoying. Ionic Liquid Assisted Synthesis of α-Fe2O3 Nanospheres Based on Potassium Acetate Solution and Their Gas-sensing Properties† [J]. Chem. J. Chinese Universities, 2018, 39(8): 1631. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||