Chem. J. Chinese Universities ›› 2022, Vol. 43 ›› Issue (5): 20220063.doi: 10.7503/cjcu20220063
• Review • Previous Articles Next Articles
CHEN Zhaoyang1, XUE Yurui1(), LI Yuliang1,2(
)
Received:
2022-01-26
Online:
2022-05-10
Published:
2022-03-15
Contact:
XUE Yurui,LI Yuliang
E-mail:yrxue@sdu.edu.cn;ylli@iccas.ac.cn
Supported by:
CLC Number:
TrendMD:
CHEN Zhaoyang, XUE Yurui, LI Yuliang. Synthesis and Applications of Graphdiyne Based Zerovalent Atomic Catalysts[J]. Chem. J. Chinese Universities, 2022, 43(5): 20220063.
1 | Chen Z., Vorobyeva E., Mitchell S., Fako E., Ortuño M. A., López N., Collins S. M., Midgley P. A., Richard S., Vilé G., Pérez⁃Ramírez J., Nat. Nanotechnol., 2018, 13, 702—707 |
2 | Xu H., Cheng D., Cao D., Zeng X. C., Nat. Catal., 2018, 1, 339—348 |
3 | Xue Y., Huang B., Yi Y., Guo Y., Zuo Z., Li Y., Jia Z., Liu H., Li Y., Nat. Commun., 2018, 9, 1460 |
4 | Hui L., Xue Y., YuH., Zhang C., Huang B., Li, Y., Chemphyschem, 2020, 21, 2145—2149 |
5 | Hui L., Xue Y., Yu H., Liu Y., Fang Y., Xing C., Huang B., Li Y., J. Am. Chem. Soc., 2019, 141, 10677—10683 |
6 | Huang C., Li Y., Wang N., Xue Y., Zuo Z., Liu H., Li Y., Chem. Rev., 2018, 118, 7744—7803 |
7 | Qiao B., Wang A., Yang X., Allard L. F., Jiang Z., Cui Y., Liu J., Li J., Zhang T., Nature Chem., 2011, 3, 634—641 |
8 | Zhang H., Watanabe T., Okumura M., Haruta M., Toshima N., Nature Mater., 2012, 11, 49—52 |
9 | Kyriakou G., Boucher M. B., Jewell A. D., Lewis E. A., Lawton T. J., Baber A. E., Tierney H. L., Flytzani⁃Stephanopoulos M., Sykes E. C. H., Science, 2012, 335, 1209 |
10 | Huang Z., Gu X., Cao Q., Hu P., Hao J., Li J., Tang X., Angew. Chem. Int. Ed., 2012, 51, 4198—4203 |
11 | Moses⁃DeBusk M., Yoon M., Allard L. F., Mullins D. R., Wu Z., Yang X., Veith G., Stocks G. M., Narula C. K., J. Am. Chem. Soc., 2013, 135, 12634—12645 |
12 | Song W., Hensen E. J. M., J. Phys. Chem. C, 2013, 117, 7721—7726 |
13 | Wei H., Liu X., Wang A., Zhang L., Qiao B., Yang X., Huang Y., Miao S., Liu J., Zhang T., Nature Commun., 2014, 5, 5634 |
14 | Zhao Y.X., Li Z.Y., Yuan Z., Li X.N., He S.G., Angew. Chem. Int. Ed., 2014, 53, 9482—9486 |
15 | Shi Y., Zhao C., Wei H., Guo J., Liang S., Wang A., Zhang T., Liu J., Ma T., Adv. Mater., 2014, 26, 8147—8153 |
16 | Li Z.Y., Yuan Z., Li X.N., Zhao Y.X., He S.G., J. Am. Chem. Soc., 2014, 136, 14307—14313 |
17 | Li X.N., Yuan Z., He S.G., J. Am. Chem. Soc., 2014, 136, 3617—3623 |
18 | Hu P., Huang Z., Amghouz Z., Makkee M., Xu F., Kapteijn F., Dikhtiarenko A., Chen Y., Gu X., Tang X., Angew. Chem. Int. Ed., 2014, 53, 3418—3421 |
19 | Guo X., Fang G., Li G., Ma H., Fan H., Yu L., Ma C., Wu X., Deng D., Wei M., Tan D., Si R., Zhang S., Li J., Sun L., Tang Z., Pan X., Bao X., Science, 2014, 344, 616 |
20 | Deng D., Chen X., Yu L., Wu X., Liu Q., Liu Y., Yang H., Tian H., Hu Y., Du P., Si R., Wang J., Cui X., Li H., Xiao J., Xu T., Deng J., Yang F., Duchesne P. N., Zhang P., Zhou J., Sun L., Li J., Pan X., Bao X., Sci. Adv., 2015, 1, e1500462 |
21 | Fei H., Dong J., Arellano⁃Jiménez M. J., Ye G., Dong Kim N., Samuel E. L. G., Peng Z., Zhu Z., Qin F., Bao J., Yacaman M. J., Ajayan P. M., Chen D., Tour J. M., Nature Commun., 2015, 6, 8668 |
22 | Yan H., Cheng H., Yi H., Lin Y., Yao T., Wang C., Li J., Wei S., Lu J., J. Am. Chem. Soc., 2015, 137, 10484—10487 |
23 | Pei G. X., Liu X. Y., Wang A., Lee A. F., Isaacs M. A., Li L., Pan X., Yang X., Wang X., Tai Z., Wilson K., Zhang T., ACS Catal., 2015, 5, 3717—3725 |
24 | Liu P., Zhao Y., Qin R., Mo S., Chen G., Gu L., Chevrier D. M., Zhang P., Guo Q., Zang D., Wu B., Fu G., Zheng N., Science, 2016, 352, 797 |
25 | Qiao B., Liu J., Wang Y.G., Lin Q., Liu X., Wang A., Li J., Zhang T., Liu J., ACS Catal., 2015, 5, 6249—6254 |
26 | Thomas J. M., Nature, 2015, 525, 325—326 |
27 | Zhang Z., Zhu Y., Asakura H., Zhang B., Zhang J., Zhou M., Han Y., Tanaka T., Wang A., Zhang T., Yan N., Nature Commun., 2017, 8, 16100 |
28 | Fang X., Shang Q., Wang Y., Jiao L., Yao T., Li Y., Zhang Q., Luo Y., Jiang H. L., Adv. Mater., 2018, 30, 1705112 |
29 | Kuo C.T., Lu Y., Kovarik L., Engelhard M., Karim A. M., ACS Catal., 2019, 9, 11030—11041 |
30 | Zhang J., Zhao Y., Guo X., Chen C., Dong C. L., Liu R. S., Han C. P., Li Y., Gogotsi, Y., Wang, G., Nature Catal., 2018, 1, 985—992 |
31 | Narula C. K., Allard L. F., Wu Z., Sci. Rep., 2017, 7, 6231 |
32 | Xi W., Wang K., Shen Y., Ge M., Deng Z., Zhao Y., Cao Q., Ding Y., Hu G., Luo J., Nature Commun., 2020, 11, 1919 |
33 | Jiao L., Wan G., Zhang R., Zhou H., Yu S. H., Jiang H. L., Angew. Chem. Int. Ed., 2018, 57, 8525—8529 |
34 | Zhu C., Shi Q., Xu B. Z., Fu S., Wan G., Yang C., Yao S., Song J., Zhou H., Du D., Beckman S. P., Su D., Lin Y., Adv. Energy Mater., 2018, 8, 1801956 |
35 | Liu P., Qin R., Fu G., Zheng N., J. Am. Chem. Soc., 2017, 139, 2122—2131 |
36 | Wang L., Zhang S., Zhu Y., Patlolla A., Shan J., Yoshida H., Takeda S., Frenkel A. I., Tao F., ACS Catal., 2013, 3, 1011—1019 |
37 | Yardimci D., Serna P., Gates B. C., Chem. Eur. J., 2013, 19, 1235—1245 |
38 | Lin J., Wang A., Qiao B., Liu X., Yang X., Wang X., Liang J., Li J., Liu J., Zhang T., J. Am. Chem. Soc., 2013, 135, 15314—15317 |
39 | Qu Y., Li Z., Chen W., Lin Y., Yuan T., Yang Z., Zhao C., Wang J., Zhao C., Wang X., Zhou F., Zhuang Z., Wu Y., Li Y., Nature Catal., 2018, 1, 781—786 |
40 | Liu M. J., Lee J. Y., Yang T. C., Zheng F. Y., Zhao J., Yang C. M., Lee L. Y. S., Small Methods, 2021, 5, 10 |
41 | Wang X. N., Zhou H. Y., Yan Z., Zhang X. Y., Jia J. F., Wu H. S., Theor. Chem. Acc., 2017, 136, 6 |
42 | Xu Y. S., Zhu L. P., Cui X. X., Zhao M. Y., Li Y. L., Chen L. L., Jiang W. C., Jiang T., Yang S. G., Wang Y., Nano Res., 2020, 13, 752—758 |
43 | Shi J. L., Chem, 2017, 2, 468—469 |
44 | Chen M. T., Wang N., Zhu L. H., Catal. Today, 2020, 348, 187—193 |
45 | Vile G., Sharma P., Nachtegaal M., Tollini F., Moscatelli D., Sroka⁃Bartnicka A., Tomanec O., Petr M., Filip J., Pieta I. S., Zboril R., Gawande M. B., Sol. RRL, 2021, 5, 12 |
46 | Millet M. M., Algara⁃Siller G., Wrabetz S., Mazheika A., Girgsdies F., Teschner D., Seitz F., Tarasov A., Leychenko S. V., Schlogl R., Frei E., J. Am. Chem. Soc., 2019, 141, 2451—2461 |
47 | Ren Y. J., Tang Y., Zhang L. L., Liu X. Y., Li L., Miao S., Su D. S., Wang A. Q., Li J., Zhang T., Nature Commun., 2019, 10, 9 |
48 | Liu K. R., Badamdorj B., Yang F., Janik M. J., Antonietti M., Angew. Chem. Int. Ed., 2021, 60, 24220—24226 |
49 | Marcinkowski M. D., Yuk S. F., Doudin N., Smith R. S., Nguyen M. T., Kay B. D., Glezakou V. A., Rousseau R., Dohnalek Z., ACS Catal., 2019, 9, 10977—10982 |
50 | Tao X. Q., Long R., Wu D., Hu Y. G., Qiu G. H., Qi Z. M., Li B. X., Jiang R. B., Xiong Y. J., Small, 2020, 16, 11 |
51 | Bai S. X., Liu F. F., Huang B. L., Li F., Lin H. P., Wu T., Sun M. Z., Wu J. B., Shao Q., Xu Y., Huang X. Q., Nature Commun., 2020, 11, 9 |
52 | Zhao W., Wang J., Yin R., Li B. Y., Huang X. S., Zhao L. L., Qian L., J. Colloid Interface Sci., 2020, 564, 28—36 |
53 | Song Z. X., Zhang L., Doyle⁃Davis K., Fu X. Z., Luo J. L., Sun X. L., Adv. Energy Mater., 2020, 10, 42 |
54 | Chen Y. J., Zhuo H. Y., Pan Y., Liang J. X., Liu C. G., Li J., Sci. China Mater., 2021, 64, 1939—1951 |
55 | Zhang Q., Zhang X. X., Wang J. Z., Wang C. W., Nanotechnology, 2021, 32, 23 |
56 | Ge J. M., Zhang D. B., Qin Y., Dou T., Jiang M. H., Zhang F. Z., Lei X. D., Appl. Catal. B, 2021, 298, 8 |
57 | Zhang J., Wu X., Cheong W. C., Chen W., Lin R., Li J., Zheng L., Yan W., Gu L., Chen C., Peng Q., Wang D., Li Y., Nat. Commun., 2018, 9, 1002 |
58 | Liu J.C., Wang Y.G., Li J., J. Am. Chem. Soc., 2017, 139, 6190—6199 |
59 | Qiao B., Wang A., Yang X., Allard L. F., Jiang Z., Cui Y., Liu J., Li J., Zhang T., Nat. Chem., 2011, 3, 634—641 |
60 | Wei H., Liu X., Wang A., Zhang L., Qiao B., Yang X., Huang Y., Miao S., Liu J., Zhang T., Nat. Commun., 2014, 5, 5634 |
61 | Gong X.Q., Selloni A., Dulub O., Jacobson P., Diebold U., J. Am. Chem. Soc., 2008, 130, 370—381 |
62 | Liu L. C., Corma A., Nat. Rev. Mater., 2021, 6, 244—263 |
63 | Li G. X., Li Y. L., Liu H. B., Guo Y. B., Li Y. J., Zhu D. B., Chem. Commun., 2010, 46, 3256—3258 |
64 | Jia Z., Li Y., Zuo Z., Liu H., Huang C., Li Y., Acc. Chem. Res., 2017, 50, 2470—2478 |
65 | Zuo Z., Wang D., Zhang J., Lu F., Li Y., Adv. Mater., 2019, 31, 1803762 |
66 | Lu C., Yang Y., Wang J., Fu R., Zhao X., Zhao L., Ming Y., Hu Y., Lin H., Tao X., Li Y., Chen W., Nat. Commun., 2018, 9, 752 |
67 | Gao X., Liu H., Wang D., Zhang J., Chem. Soc. Rev., 2019, 48, 908—936 |
68 | Li Y. J., Xu L., Liu H. B., Li Y. L., Chem. Soc. Rev., 2014, 43, 2572—2586 |
69 | Wang X., Sci. China Chem., 2015, 58, 347—348 |
70 | Xue Y., Li Y., Zhang J., Liu Z., Zhao Y., Sci. China Chem., 2018, 61, 765—786 |
71 | Li Y., Sci. Sin. Chim., 2017, 47, 1045—1056 |
72 | Wang F., Zuo Z., Li L., He F., Lu F., Li Y., Adv. Mater., 2019, 31, 1806272 |
73 | Yu H., Xue Y., Huang B., Hui L., Zhang C., Fang Y., Liu Y., Zhao Y., Li Y., Liu H., Li Y., iScience, 2018, 11, 31—41 |
74 | Sun M., Wu T., Xue Y., Dougherty A. W., Huang B., Li Y., Yan C.H., Nano Energy, 2019, 62, 754—763 |
75 | He T., Matta S. K., Will G., Du A., Small Methods, 2019, 3, 1800419 |
76 | Yu H., Xue Y., Hui L., Zhang C., Fang Y., Liu Y., Chen X., Zhang D., Huang B., Li Y., Natl. Sci. Rev., 2021, 8, nwaa213 |
77 | Fang Y., Xue Y., Hui L., Chen X., Li Y., J. Mater. Chem. A, 2022, 10, 6073—6077 |
78 | Zou H. Y., Rong W. F., Wei S. T., Ji Y. F., Duan L. L., Proc. Natl. Acad. Sci. U. S. A., 2020, 117, 29462—29468 |
79 | Yin X. P., Wang H. J., Tang S. F., Lu X. L., Shu M., Si R., Lu T. B., Angew. Chem. Int. Ed., 2018, 57, 9382—9386 |
80 | Yu H., Hui L., Xue Y., Liu Y., Fang Y., Xing C., Zhang C., Zhang D., Chen X., Du Y., Wang Z., Gao Y., Huang B., Li Y., Nano Energy, 2020, 72, 104667 |
81 | Qi S., Wang J., Song X., Fan Y., Li W., Du A., Zhao M., Sci. Bull., 2020, 65, 995—1002 |
82 | Feng Z., Li R., Ma Y., Li Y., Wei D., Tang Y., Dai X., Phys. Chem. Chem. Phys., 2019, 21, 19651—19659 |
83 | Gao Y., Cai Z. W., Wu X. C., Lv Z. L., Wu P., Cai C. X., ACS Catal., 2018, 8, 10364—10374 |
84 | He T., Matta S. K., Will G., Du A., Small Methods, 2019, 3, n/a1800419 |
85 | Zheng Z., Wang Z., Xue Y., He F., Li Y., ACS Mater. Au, 2021, 1, 107—115 |
86 | Liu T., Wang G., Bao X., J. Phys. Chem. C, 2021, 125, 26013—26020 |
87 | He T. W., Zhang L., Kour G., Du A. J., J. CO2 Util., 2020, 37, 272—277 |
88 | Yin X. P., Tang S. F., Zhang C., Wang H. J., Si R., Lu X. L., Lu T. B., J. Mater. Chem. A, 2020, 8, 20925—20930 |
89 | Ali S., Lian Z., Li B., ACS Appl. Nano Mater., 2021, 4, 6152—6159 |
90 | Xu G. L., Liu F. X., Lu Z. S., Talib S. H., Ma D. W., Yang Z. X., Physica E, 2021, 130, 7 |
91 | Sun C. N., Huang S. M., Huang M. R., Zhang X. R., Xu S. S., Wang H., Chen Y. N., Shi X. R., Dalton Trans., 2021, 50, 10867—10879 |
92 | Xu G. L., Wang R., Ding Y. C., Lu Z. S., Ma D. W., Yang Z. X., J. Phys. Chem. C, 2018, 122, 23481—23492 |
93 | Li J. A., Zhong L. X., Tong L. M., Yu Y., Liu Q., Zhang S. C., Yin C., Qiao L., Li S. Z., Si R., Zhang J., Adv. Funct. Mater., 2019, 29, 9 |
[1] | QIN Yongji, LUO Jun. Applications of Single-atom Catalysts in CO2 Conversion [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220300. |
[2] | YAO Qing, YU Zhiyong, HUANG Xiaoqing. Progress in Synthesis and Energy-related Electrocatalysis of Single-atom Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220323. |
[3] | LIN Gaoxin, WANG Jiacheng. Progress and Perspective on Molybdenum Disulfide with Single-atom Doping Toward Hydrogen Evolution [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220321. |
[4] | WANG Sicong, PANG Beibei, LIU Xiaokang, DING Tao, YAO Tao. Application of XAFS Technique in Single-atom Electrocatalysis [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220487. |
[5] | HAN Fuchao, LI Fujin, CHEN Liang, HE Leiyi, JIANG Yunan, XU Shoudong, ZHANG Ding, QI Lu. Enhance of CoSe2/C Composites Modified Separator on Electrochemical Performance of Li-S Batteries at High Sulfur Loading [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220163. |
[6] | WANG Ruhan, JIA Shunhan, WU Limin, SUN Xiaofu, HAN Buxing. CO2-involved Electrochemical C—N Coupling into Value-added Chemicals [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220395. |
[7] | WANG Lijun, LI Xin, HONG Song, ZHAN Xinyu, WANG Di, HAO Leiduan, SUN Zhenyu. Efficient Electrocatalytic CO2 Reduction to CO by Tuning CdO-Carbon Black Interface [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220317. |
[8] | YANG Lijun, YU Yang, ZHANG Lei. Construction of Dual-functional 2D/3D Hydrid Co2P-CeO x Heterostructure Integrated Electrode for Electrocatalytic Urea Oxidation Assisted Hydrogen Production [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220082. |
[9] | XIA Tian, WAN Jiawei, YU Ranbo. Progress of the Structure-property Correlation of Heteroatomic Coordination Structured Carbon-based Single-atom Electrocatalysts [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220162. |
[10] | WONG Honho, LU Qiuyang, SUN Mingzi, HUANG Bolong. Rational Design of Graphdiyne-based Atomic Electrocatalysts: DFT and Self-validated Machine Learning [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220042. |
[11] | ZHANG Hongwei, CHEN Wen, ZHAO Meiqi, MA Chao, HAN Yunhu. Research Progress of Single Atom Catalysts in Electrochemistry [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220129. |
[12] | WU Jun, HE Guanchao, FEI Huilong. Self-supported Film Electrodes Decorated with Single Atoms for Energy Electrocatalysis [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220051. |
[13] | CHEN Changli, MI Wanliang, LI Yujing. Research Progress of Single Atom Catalysts in Electrochemical Hydrogen Cycling [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220065. |
[14] | DING Qin, ZHANG Zixuan, XU Peicheng, LI Xiaoyu, DUAN Limei, WANG Yin, LIU Jinghai. Effects of Cu, Ni and Co Hetroatoms on Constructions and Electrocatalytic Properties of Fe-based Carbon Nanotubes [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220421. |
[15] | WANG Zumin, MENG Cheng, YU Ranbo. Doping Regulation in Transition Metal Phosphides for Hydrogen Evolution Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220544. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||