Chem. J. Chinese Universities ›› 2020, Vol. 41 ›› Issue (6): 1262.doi: 10.7503/cjcu20200149
• Physical Chemistry • Previous Articles Next Articles
XIONG Junyu,WANG Shanshan,XU Yanqing*(),HU Changwen*(
)
Received:
2020-03-17
Online:
2020-06-10
Published:
2020-04-26
Contact:
Yanqing XU,Changwen HU
E-mail:xyq@bit.edu.cn;cwhu@bit.edu.cn
Supported by:
CLC Number:
TrendMD:
XIONG Junyu, WANG Shanshan, XU Yanqing, HU Changwen. Selective Oxidation of Atomically Dispersed Fe-N-C Catalyst Under Mild Conditions [J]. Chem. J. Chinese Universities, 2020, 41(6): 1262.
[1] |
Qiao B., Wang A., Yang X., Allard L. F., Jiang Z., Cui Y., Liu J., Li J., Zhang T., Nat. Chem., 2011, 3, 634—641
doi: 10.1038/nchem.1095 URL |
[2] |
Flytzani-Stephanopoulos M., Gates B. C., Annu. Rev. Chem. Biomol. Eng., 2012, 3, 545—574
doi: 10.1146/annurev-chembioeng-062011-080939 URL |
[3] |
Yang X. F., Wang A., Qiao B., Li J., Liu J., Zhang T., Acc. Chem. Res., 2013, 46, 1740—1748
doi: 10.1021/ar300361m URL |
[4] |
Zhang H., Liu G., Shi L., Ye J., Adv. Energy Mater., 2018, 8, 1701343
doi: 10.1002/aenm.v8.1 URL |
[5] |
Zhang J., Zhao Y., Chen C., Huang Y., Dong C., Chen C., Liu R., Wang C., Yan K., Li Y., Wang G., J. Am. Chem. Soc., 2019, 141, 20118—20126
doi: 10.1021/jacs.9b09352 URL |
[6] |
Jiang Z., Sun W., Shang H., Chen W., Sun T., Li H., Dong J., Zhou J., Li Z., Wang Y., Cao R., Sarangi R., Yang Z., Wan D., Zhang J., Li Y., Energy Environ. Sci., 2019, 12, 3508—3514
doi: 10.1039/C9EE02974E URL |
[7] |
Huang Z., Gu X., Cao Q., Hu P., Hao J., Li J., Tang X., Angew. Chem. Int. Ed., 2012, 51, 4198—4203
doi: 10.1002/anie.201109065 URL |
[8] |
Deng D., Chen X., Yu L., Wu X., Liu Q., Liu Y., Yang H., Tian H., Hu Y., Du P., Si R., Wang J., Cui X., Li H., Xiao J., Xu T., Deng J., Yang F., Duchesne P. N., Zhang P., Zhou J., Sun L., Li J., Pan X., Bao X., Sci. Adv., 2015, 1, e1500462
doi: 10.1126/sciadv.1500462 URL |
[9] |
Fei H., Dong J., Arellano-Jimenez M. J., Kim G., Ye N. D., Samuel E. L. G., Peng Z., Zhu Z., Qin F., Bao J., Yacaman M. J., Ajayan P. M., Chen D., Tour J. M., Nat. Commun., 2015, 6, 8668
doi: 10.1038/ncomms9668 URL |
[10] |
Ortalan V., Uzun A., Gates B. C., Browning N. D., Nat. Nano, 2010, 5, 506—510
doi: 10.1038/nnano.2010.92 URL |
[11] |
Lin L., Yang Z. K., Jiang Y. F., Xu A. W., ACS Catal., 2016, 6, 4449—4454
doi: 10.1021/acscatal.6b00535 URL |
[12] |
Wang Y. C., Lai Y. J., Song L., Zhou Z. Y., Liu J. G., Wang Q., Yang X. D., Chen C., Shi W., Zheng Y. P., Rauf M., Sun S. G., Angew. Chem. Int. Ed., 2015, 54, 9907—9910
doi: 10.1002/anie.201503159 URL |
[13] |
Wu G., More K. L., Johnston C. M., Zelenay P., Science, 2011, 332, 443—447
doi: 10.1126/science.1200832 URL |
[14] |
Zhao Y., Watanabe K., Hashimoto K., J. Am. Chem. Soc., 2012, 134, 19528—19531
doi: 10.1021/ja3085934 URL |
[15] |
Wei W., Shi X., Gao P., Wang S., Hu W., Zhao X., Ni Y., Xu X., Xu Y., Yan W., Ji H., Cao M., Nano Energy, 2018, 52, 29—37
doi: 10.1016/j.nanoen.2018.07.033 URL |
[16] |
Huan T. N., Ranjbar N., Rousse G., Sougrati M., Zitolo A., Mougel V., Jaouen F., Fontecave M., ACS Catal., 2017, 7, 1520—1525
doi: 10.1021/acscatal.6b03353 URL |
[17] |
Gu J., Hsu C. S., Bai L., Chen H. M., Hu X., Science, 2019, 364, 1091—1094
doi: 10.1126/science.aaw7515 URL |
[18] |
Pan F., Zhang H., Liu K., Cullen D., More K., Wang M., Feng Z., Wang G., Wu G., Li Y., ACS Catal., 2018, 8, 3116—3122
doi: 10.1021/acscatal.8b00398 URL |
[19] |
Liu W., Zhang L., Liu X., Liu X., Yang X., Miao S., Wang W., Wang A., Zhang T., J. Am. Chem. Soc., 2017, 139, 10790—10798
doi: 10.1021/jacs.7b05130 URL |
[20] |
Zhang M., Wang Y. G., Chen W., Dong J., Zheng L., Luo J., Wan J., Tian S., Cheong W. C., Wang D., Li Y., J. Am. Chem. Soc., 2017, 139, 10976—10979
doi: 10.1021/jacs.7b05372 URL |
[21] |
Zhang J., Nagamatsu S., Du J., Tong C., Fang H., Deng D., Liu X., Asakura K., Yuan Y., J. Catal., 2018, 367, 16—26
doi: 10.1016/j.jcat.2018.08.004 URL |
[22] |
Boruah J. J., Ahmed K., Das S., Gogoi S. R., Saikia G., Sharma M., Islam N. S., J. Mol. Catal. A-Chem., 2016, 425, 21—30
doi: 10.1016/j.molcata.2016.09.026 URL |
[23] |
Mirfakhraei S., Hekmati M., Eshbala F. H., Veisi H., New J. Chem., 2018, 42, 1757—1761
doi: 10.1039/C7NJ02513K URL |
[24] |
Fareghi-Alamdari R., Zekri N., Moghadam A. J., Farsani M. R., Catal. Commun., 2017, 98, 71—75
doi: 10.1016/j.catcom.2017.04.050 URL |
[25] |
Rostamnia S., Gholipour B., Liu X., Wang Y., Arandiyan H., J. Colloid Interface Sci., 2018, 511, 447—455
doi: 10.1016/j.jcis.2017.10.028 URL |
[26] |
Allahresani A., Nasseri M. A., RSC Adv., 2014, 4, 60702—60710
doi: 10.1039/C4RA09973G URL |
[27] |
Védrine J., Catalysts, 2017, 7, 341
doi: 10.3390/catal7110341 URL |
[28] |
Rajabi F., Naserian S., Primo A., Luque R., Adv. Synth. Catal., 2011, 353, 2060—2066
doi: 10.1002/adsc.201100149 URL |
[1] | TENG Zhenyuan, ZHANG Qitao, SU Chenliang. Charge Separation and Surface Reaction Mechanisms for Polymeric Single-atom Photocatalysts [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220325. |
[2] | CHU Yuyi, LAN Chang, LUO Ergui, LIU Changpeng, GE Junjie, XING Wei. Single-atom Cerium Sites Designed for Durable Oxygen Reduction Reaction Catalyst with Weak Fenton Effect [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220294. |
[3] | QIN Yongji, LUO Jun. Applications of Single-atom Catalysts in CO2 Conversion [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220300. |
[4] | LIN Zhi, PENG Zhiming, HE Weiqing, SHEN Shaohua. Single-atom and Cluster Photocatalysis: Competition and Cooperation [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220312. |
[5] | YANG Jingyi, LI Qinghe, QIAO Botao. Synergistic Catalysis Between Ir Single Atoms and Nanoparticles for N2O Decomposition [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220388. |
[6] | LIN Gaoxin, WANG Jiacheng. Progress and Perspective on Molybdenum Disulfide with Single-atom Doping Toward Hydrogen Evolution [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220321. |
[7] | REN Shijie, QIAO Sicong, LIU Chongjing, ZHANG Wenhua, SONG Li. Synchrotron Radiation X-Ray Absorption Spectroscopy Research Progress on Platinum Single-atom Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220466. |
[8] | ZHAO Runyao, JI Guipeng, LIU Zhimin. Efficient Electrocatalytic CO2 Reduction over Pyrrole Nitrogen-coordinated Single-atom Copper Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220272. |
[9] | WU Jun, HE Guanchao, FEI Huilong. Self-supported Film Electrodes Decorated with Single Atoms for Energy Electrocatalysis [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220051. |
[10] | ZHUANG Jiahao, WANG Dingsheng. Current Advances and Future Challenges of Single-atom Catalysis [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220043. |
[11] | ZHANG Hongwei, CHEN Wen, ZHAO Meiqi, MA Chao, HAN Yunhu. Research Progress of Single Atom Catalysts in Electrochemistry [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220129. |
[12] | YIN Xiaoju, SUN Xun, ZHAO Chenghao, JIANG Bo, ZHAO Chenyang, ZHANG Naiqing. Research Progress of Single Atomic Catalysts in Lithium-sulfur Batteries [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220076. |
[13] | MA Yukun, JIN Hui, REN Chuanli, LI Zhibo. Ring-opening Polymerization of Cyclic Esters Using Recyclable Polystyrene Supported Urea-Base Binary Catalyst [J]. Chem. J. Chinese Universities, 2021, 42(9): 2968. |
[14] | LI Chenchen, NA Yong. g-C3N4/CdS/Ni Composite as a Bifunctional Photocatalyst for H2 Generation and 5-Hydroxymethylfurfural Oxidation [J]. Chem. J. Chinese Universities, 2021, 42(9): 2896. |
[15] | YUAN Zhongwen, HE Lizhen, CHEN Tianfeng. Biomedical Applications of Single-atom Catalysts [J]. Chem. J. Chinese Universities, 2020, 41(12): 2690. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||