Chem. J. Chinese Universities ›› 2024, Vol. 45 ›› Issue (3): 20230523.doi: 10.7503/cjcu20230523
• Physical Chemistry • Previous Articles Next Articles
ZHANG Jinkai, LI Jiali, LIU Xiaoming(), MU Ying(
)
Received:
2023-12-26
Online:
2024-03-10
Published:
2024-01-31
Contact:
LIU Xiaoming, MU Ying
E-mail:xm_liu@jlu.edu.cn;ymu@jlu.edu.cn
Supported by:
CLC Number:
TrendMD:
ZHANG Jinkai, LI Jiali, LIU Xiaoming, MU Ying. Application of Covalent Organic Frameworks in High-performance Lithium-ion Battery Anode Materials[J]. Chem. J. Chinese Universities, 2024, 45(3): 20230523.
Sample | Rs/Ω | Rs error(%) | Rct/Ω | Rct error(%) | Wo⁃R/Ω | Wo⁃R error(%) | Chi⁃Sqr |
---|---|---|---|---|---|---|---|
COF⁃1(before cycling) | 5.911 | 1.1473 | 194.40 | 0.9510 | 310.8 | 2.1149 | 0.0013080 |
COF⁃1(after 100 cycles) | 5.632 | 1.8446 | 45.29 | 1.9304 | 118.3 | 1.5071 | 0.0010187 |
COF⁃2(before cycling) | 3.745 | 1.6566 | 272.20 | 1.5468 | 374.3 | 0.8623 | 0.0015989 |
COF⁃2(after 100 cycles) | 3.548 | 1.9051 | 42.64 | 3.2078 | 173.8 | 1.2520 | 0.0027306 |
Table 1 Impedance values and error of each part and Chi-Squared obtained from the fitting curve of EIS of COF-1 and COF-2
Sample | Rs/Ω | Rs error(%) | Rct/Ω | Rct error(%) | Wo⁃R/Ω | Wo⁃R error(%) | Chi⁃Sqr |
---|---|---|---|---|---|---|---|
COF⁃1(before cycling) | 5.911 | 1.1473 | 194.40 | 0.9510 | 310.8 | 2.1149 | 0.0013080 |
COF⁃1(after 100 cycles) | 5.632 | 1.8446 | 45.29 | 1.9304 | 118.3 | 1.5071 | 0.0010187 |
COF⁃2(before cycling) | 3.745 | 1.6566 | 272.20 | 1.5468 | 374.3 | 0.8623 | 0.0015989 |
COF⁃2(after 100 cycles) | 3.548 | 1.9051 | 42.64 | 3.2078 | 173.8 | 1.2520 | 0.0027306 |
1 | Chu S., Cui Y., Liu N., Nature Mater., 2016, 16, 16—22 |
2 | Chu S., Majumdar A., Nature, 2012, 488, 294—303 |
3 | Armand M., Tarascon J. M., Nature, 2008, 451, 652—657 |
4 | Choudhary N., Li C., Moore J., Nagaiah N., Zhai L., Jung Y., Thomas J., Adv. Mater., 2017, 29. 1605336—1605365 |
5 | Perera F., Int. J. Environ., 2018, 15, 16—32 |
6 | Palacín M. R., Chem. Soc. Rev., 2009, 38, 2565—2575 |
7 | Dunn B., Kamath H., Tarascon J. M., Science, 2011, 334, 928—937 |
8 | Liu X. B., Liu Y. C., Feng M., Fan L. Z., J. Mater. Chem. A, 2018, 6, 23621—23627 |
9 | Xu Z. X., Yang J., Li H. P., Nuli Y., Wang J. L., J. Mater. Chem. A, 2019, 7, 9432—9446 |
10 | Zhang C. Y., Wang A. X., Zhang J. H., Guan X. Z., Tang W. J., Luo J. Y., Adv. Energy Mater., 2018, 8, 1802833—1802845 |
11 | Wakihara M., Mater. Sci. Eng. R Rep., 2001, 33, 109—134 |
12 | Cheng X. B., Zhang R., Zhao C. Z., Zhang Q., Chem. Rev., 2017, 117, 10403—10473 |
13 | Winter M., Barnett B., Xu K., Chem. Rev., 2018, 118, 11433—11456 |
14 | Wu Z. Z., Xie J., Xu Z. C. J., Zhang S. Q., Zhang Q. C., J. Mater. Chem. A, 2019, 7, 4259—4290 |
15 | Bu F. X., Shakir I., Xu Y. X., Adv Mater Interfaces, 2018, 5, 1800468—1800489 |
16 | Adam T., Liao G. Y., Petersen J., Geier S., Finke B., Wierach P., Kwade A., Wiedemann M., Energies, 2018, 11, 335—355 |
17 | Capovilla G., Cestino E., Reyneri L. M., Romeo G., Aerospace, 2020, 7, 17—31 |
18 | Roy P., Srivastava S. K., J. Mater. Chem. A, 2015, 3, 2454—2484 |
19 | Rajkamal A., Thapa R., Adv. Mater. Technol., 2019, 4, 1900307—1900326 |
20 | Ge P., Hou H. S., Cao X. Y., Li S. J., Zhao G. G., Guo T. X., Wang C., Ji X. B., Adv. Sci., 2018, 5, 1800080—1800098 |
21 | Nitta N., Yushin G., Part Part Syst Charact., 2014, 31, 317—336 |
22 | Aravindan V., Lee Y. S., Madhavi S., Adv. Energy Mater., 2015, 5, 1402225—1402267 |
23 | Chen J. S., Lou X. W., Small, 2013, 9, 1877—1893 |
24 | Zhao Y., Wang L. P., Sougrati M. T., Feng Z., Leconte Y., Fisher A., Srinivasan M., Xu Z., Adv. Energy Mater., 2017, 7, 1601424—1601493 |
25 | Cabana J., Monconduit L., Larcher D., Palacin M. R., Adv. Mater., 2010, 22, E170—E192 |
26 | Mauger A., Julien C. M., Ionics, 2017, 23, 1933—1947 |
27 | Cote A. P., Benin A. I., Ockwig N. W., O'Keeffe M., Matzger A. J., Yaghi O. M., Science, 2005, 310, 1166—1170 |
28 | Uribe⁃Romo F. J., Hunt J. R., Furukawa H., Klock C., O’Keeffe M., Yaghi O. M., J. Am. Chem. Soc., 2009, 131, 4570—4571 |
29 | Geng K., He T., Liu R., Dalapati S., Tan K. T., Li Z., Tao S. S., Gong Y. F., Jiang Q. H., Jiang D., Chem. Rev., 2020, 120, 8814—8933 |
30 | Sun T., Xie J., Guo W., Li D. S., Zhang Q. C., Adv. Energy Mater., 2020, 10, 1904199—1904221 |
31 | Zhou B., Le J. B., Cheng Z. Y., Zhao X., Shen M., Xie M. L., Hu B. W., Yang X. D., Chen L. W., Chen H. W., ACS Appl. Mater. Interfaces, 2020, 12, 8198—8205 |
32 | Zhang Y. C., Wu Y., An Y. L., Wei C. L., Tan L.W., Xi B. J., Xiong S. L., Feng J. K., Small Methods, 2022, 6, 2200306—2200313 |
33 | Wang X. X., Chi X. W., Li M. L., Guan D. H., Miao C. L., Xu J. J., Chem, 2023, 9, 394—410 |
34 | Li Z. H., Ji W. Y., Wang T. X., Zhang Y. R., Li Z., Ding X. S., Han B. H., Feng W., ACS Appl. Mater. Interfaces, 2021, 13, 22586—22596 |
35 | Wen Y. C., Ding J. Y., Yang Y., Lan X. X., Liu J., Hu R. Z., Zhu M., Adv. Funct. Mater., 2021, 32, 2109377—2109386 |
36 | Liu X. L., Jin Y. C., Wang H. L., Yang X. Y., Zhang P. P., Wang K., Jiang J. Z., Adv. Mater., 2022, 34, 2203605—2203613 |
37 | Gao H., Neale A. R., Zhu Q., Bahri M., Xue Wang X., Yang H. F., Xu Y. J., Clowes R., Browning N. D., Little M. A., Hardwick L. J., Cooper A. I., J. Am. Chem. Soc., 2022, 144, 9434—9442 |
38 | Yang X. B., Lin C., Han D. D., Li G. J., Huang C., Liu J., Wu X. L., Zhai L. P., Mi L. W., J. Mater. Chem. A, 2022, 10, 3989—3995 |
39 | Zhai L. P., Li G. J., Yang X. B., Park S., Han D. D., Mi L. W., Wang Y. J., Li Z. P., Lee S. Y., Adv. Funct. Mater., 2022, 32, 2108798—2108805 |
40 | Zhao G. F., Sun Y. J., Yang Y. X., Zhang C. H., An Q., Guo H., EcoMat, 2022, 4, e12221—e12232 |
41 | Lei Z. D., Chen X. D., Sun W. W., Zhang Y., Wang Y., Adv. Energy Mater., 2019, 9, 1801010—1801022 |
42 | Zhao G. F., Zhang Y. H., Gao Z. H., Li H. N., Liu S. M., Cai S., Yang X. F., Guo H., Sun X. L., ACS Energy Lett., 2020, 5, 1022—1031 |
43 | Xu X. Y., Zhang S. Q., Xu K., Chen H. Z., Fan X. L., Huang N., J. Am. Chem. Soc., 2022, 145, 1022—1030 |
44 | Sun Y. J., Zhao G. F., Fu Y., Yang Y. X., Zhang C. H., An Q., Guo H., Research, 2022, 2022, 9798582—9798591 |
45 | Wei H. T., Ning J., Cao X. D., Li X. H., Hao L., J. Am. Chem. Soc., 2018, 140, 11618—11622 |
46 | Li Z. P., Wang J. A., Ma S., Zhang Z. W., Zhi Y. F., Zhang F. C., Xia H., Henkelman G., Liu X. M., Appl. Catal. B: Environ., 2022, 310, 121335—121345 |
47 | Kang H. W., Liu H. L., Li C. X., Sun L., Zhang C. F., Gao H. C., Yin J., Yang B. C., You Y., Jiang K. C., Long H. J., Xin S., ACS Appl. Mater. Interfaces, 2018, 10, 37023—37030 |
48 | Wu J. S., Rui X. H., Wang C. Y., Pei W. B., Lau R., Yan Q. Y., Zhang Q. C., Adv. Energy Mater., 2015, 5, 1402189—1402194 |
49 | Man Z. M., Li P., Zhou D., Zang R., Wang S. J., Li P. X., Liu S. S., Li X. M., Wu Y. H., Liang X. H., Wang G. X., J. Mater. Chem. A, 2019, 7, 2368—2375 |
50 | Li Z. H., Ji W. Y., Wang T. X., Ding X. S., Han B. H., Feng W., Chem. Eng. J., 2022, 437, 135293—135301 |
51 | Wang J., Yao H. Y., Du C. Y., Guan S. W., J. Power Sources, 2021, 482, 228931—228937 |
52 | Lei Z. D., Yang Q. S., Xu Y., Guo S. Y., Sun W. W., Liu H., Lv L. P., Zhang Y., Wang Y., Nat. Commun., 2018, 9, 576—588 |
53 | Wu J. S., Rui X. H., Long G. K., Chen W. Q., Yan Q. Y., Zhang Q. C., Angew. Chem. Int. Ed., 2015, 54, 7354—7358 |
54 | Zhang Z. W., Li Z. Q., Hao F. B., Wang X. K., Li Q., Qi Y. X., Fan R. H., Yin L. W., Adv. Funct. Mater., 2014, 24, 2500—2509 |
55 | Zhen M. M., Sun M. Q., Gao G. D., Liu L., Zhou Z., Chem. Eur. J., 2015, 21, 5317—5322 |
56 | Liu H. Q., Cao K. Z., Xu X. H., Jiao L. F., Wang Y. J., Yuan H. T., ACS Appl. Mater. Interfaces, 2015, 7, 11239—11245 |
[1] | TONG Dayin, ZHAO Yaolin, WANG Yuqi, HAN Zitong, WANG Jie, ZHANG Jun, YU Chenxi. Theoretical Investigation of Volatile Iodine Adsorption onto COF-103 [J]. Chem. J. Chinese Universities, 2024, 45(1): 20230401. |
[2] | HE Ruhan, LI Hao, HAN Fang, CHEN Aoyuan, MAI Liqiang, ZHOU Liang. Research Progresses on Interface Engineering of Si-Based Anodes for Lithium-ion Batteries [J]. Chem. J. Chinese Universities, 2023, 44(5): 20220748. |
[3] | HU Shiying, SHEN Jiayan, HAN Junshan, HAO Tingting, LI Xing. Preparation of CoO Nanoparticles/Hollow Graphene Nanofiber Composites and Its Electrochemical Performances [J]. Chem. J. Chinese Universities, 2023, 44(2): 20220462. |
[4] | KONG Xiangyu, LIAO Li, LU Canzhong, FANG Qianrong. Application of Covalent Organic Framework-Polyoxometalates Composites in Heterogeneous Catalytic Epoxidation of Olefins [J]. Chem. J. Chinese Universities, 2023, 44(12): 20230282. |
[5] | ZHOU Hui, ZHU Shuaibo, WANG Jitong, QIAO Wenming, YU Zijian, ZHANG Yinxu. Construction and Electrochemical Properties of Si/rGO@CN as Anode Materials for High-performance Lithium-ion Batteries [J]. Chem. J. Chinese Universities, 2023, 44(11): 20230354. |
[6] | BI Ruyi, ZHAO Jilu, WANG Jiangyan, YU Ranbo, WANG Dan. Synthesis and Lithium-ion Battery Performance of Hollow Multishelled CoFe2O4 [J]. Chem. J. Chinese Universities, 2023, 44(1): 20220453. |
[7] | ZHANG Lingling, DONG Huanhuan, HE Xiangxi, LI Li, LI Lin, WU Xingqiao, CHOU Shulei. Progress of Hollow Carbon Materials as Anode for Sodium-ion Battery [J]. Chem. J. Chinese Universities, 2023, 44(1): 20220620. |
[8] | JIA Yanggang, SHAO Xia, CHENG Jie, WANG Pengpeng, MAO Aiqin. Preparation and Lithium Storage Performance of Pseudocapacitance-controlled Perovskite High-entropy Oxide La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3 Anode Materials [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220157. |
[9] | DING Yang, WANG Wanhui, BAO Ming. Recent Progress in Porous Framework-immobilized Molecular Catalysts for CO2 Hydrogenation to Formic Acid [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220309. |
[10] | WANG Di, ZHONG Keli, TANG Lijun, HOU Shuhua, LYU Chunxin. Synthesis of Schiff-based Covalent Organic Framework and Its Recognition of I ‒ [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220115. |
[11] | WANG Kaixuan, LI Ziping, CHEN Xianyang, CUI Yong. Synthesis, Structure and Characterization of a Dihydrophenazine Based 3D Covalent Organic Framework [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220210. |
[12] | BAO Junquan, ZHENG Shibing, YUAN Xuming, SHI Jinqiang, SUN Tianjiang, LIANG Jing. An Organic Salt PTO(KPD)2 with Enhanced Performance as a Cathode Material in Lithium-ion Batteries [J]. Chem. J. Chinese Universities, 2021, 42(9): 2911. |
[13] | WU Zhuoyan, LI Zhi, ZHAO Xudong, WANG Qian, CHEN Shunpeng, CHANG Xinghua, LIU Zhiliang. A Highly Efficient One-step Preparation Method of Nano-silicon and Carbon Composite for High-performance Lithium Ion Batteries [J]. Chem. J. Chinese Universities, 2021, 42(8): 2500. |
[14] | TIAN Runsai, LU Qian, ZHANG Hongbin, ZHANG Bo, FENG Yuanyuan, WEI Jinxiang, FENG Jijun. Design and Construction of N-Doping Carbon in⁃situ Coated Cu2O/Co3O4@C Heterostructured Composite Material for Highly Efficient Lithium-ion Storage [J]. Chem. J. Chinese Universities, 2021, 42(8): 2592. |
[15] | YI Conghua, SU Huajian, QIAN Yong, LI Qiong, YANG Dongjie. Preparation of Lignin Nanocarbon and Its Performance as a Negative Electrode for Lithium-ion Batteries [J]. Chem. J. Chinese Universities, 2021, 42(6): 1807. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||