Chem. J. Chinese Universities ›› 2024, Vol. 45 ›› Issue (9): 20240125.doi: 10.7503/cjcu20240125
• Physical Chemistry • Previous Articles Next Articles
WU Yixiao1, LIU Chaobo2, ZAN Xueyu1, ZHANG Chaoyu1, TAO Shiqi1, LI Zhiwen1, WANG Kejing1, LIU Yongjun1(), HUANG Wei1,3(
)
Received:
2024-03-18
Online:
2024-09-10
Published:
2024-05-31
Contact:
LIU Yongjun, HUANG Wei
E-mail:liuyongjun@tyut.edu.cn;huangwei@tyut.edu.cn
Supported by:
CLC Number:
TrendMD:
WU Yixiao, LIU Chaobo, ZAN Xueyu, ZHANG Chaoyu, TAO Shiqi, LI Zhiwen, WANG Kejing, LIU Yongjun, HUANG Wei. Direct Synthesis of Acetic Acid from CH4-CO2 over Pd/LDH at Low Temperature[J]. Chem. J. Chinese Universities, 2024, 45(9): 20240125.
Gas path | Compound | Flow velocity/(mL·min-1) |
---|---|---|
CH4 mixing | CH4 | 50.0 |
H2 | 5.0 | |
H2O | 0.2 | |
CO2 mixing | CO2 | 50.0 |
H2 | 20.0 | |
H2O | 0.1 |
Table 1 Composition of feed gas for the reaction
Gas path | Compound | Flow velocity/(mL·min-1) |
---|---|---|
CH4 mixing | CH4 | 50.0 |
H2 | 5.0 | |
H2O | 0.2 | |
CO2 mixing | CO2 | 50.0 |
H2 | 20.0 | |
H2O | 0.1 |
Catalyst | ICP results a (%, mass fraction) | S (m2·g-1) | V (m3·g-1) | D | L acidic sites c / (mmol·g-1) | Edb / eV | Pd0/(Pd2++Pd0) d (%) | α/ (β+α) d | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mg | Al | Pd | Pd2+3d3/2 | Pd03d3/2 | Pd2+3d5/2 | Pd03d5/2 | |||||||
MA1.5 | 19.3 | 13.4 | 4.7 | 34.6 | 0.13 | 19.5 | 0.22 | 341 | 339.8 | 337.8 | 334.8 | 39.5 | 0.55 |
MA3 | 22.8 | 10.1 | 4.8 | 24.7 | 0.09 | 24.1 | 0.21 | 341 | 339.8 | 337.8 | 334.8 | 41.2 | 0.58 |
MA5 | 23.8 | 6.5 | 4.8 | 25.4 | 0.07 | 19.7 | 0.14 | 341 | 339.8 | 337.8 | 334.8 | 51.6 | 0.65 |
MA7 | 24.9 | 4.7 | 5.1 | 17.5 | 0.05 | 25.2 | 0.13 | 341 | 339.8 | 337.8 | 334.8 | 48.4 | 0.64 |
MA9 | 25.6 | 3.9 | 4.9 | 15.6 | 0.05 | 25.9 | 0.06 | 341.3 | 340.1 | 337.3 | 335.1 | 42.5 | 0.58 |
Table 2 Physicochemical properties of fresh catalysts
Catalyst | ICP results a (%, mass fraction) | S (m2·g-1) | V (m3·g-1) | D | L acidic sites c / (mmol·g-1) | Edb / eV | Pd0/(Pd2++Pd0) d (%) | α/ (β+α) d | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mg | Al | Pd | Pd2+3d3/2 | Pd03d3/2 | Pd2+3d5/2 | Pd03d5/2 | |||||||
MA1.5 | 19.3 | 13.4 | 4.7 | 34.6 | 0.13 | 19.5 | 0.22 | 341 | 339.8 | 337.8 | 334.8 | 39.5 | 0.55 |
MA3 | 22.8 | 10.1 | 4.8 | 24.7 | 0.09 | 24.1 | 0.21 | 341 | 339.8 | 337.8 | 334.8 | 41.2 | 0.58 |
MA5 | 23.8 | 6.5 | 4.8 | 25.4 | 0.07 | 19.7 | 0.14 | 341 | 339.8 | 337.8 | 334.8 | 51.6 | 0.65 |
MA7 | 24.9 | 4.7 | 5.1 | 17.5 | 0.05 | 25.2 | 0.13 | 341 | 339.8 | 337.8 | 334.8 | 48.4 | 0.64 |
MA9 | 25.6 | 3.9 | 4.9 | 15.6 | 0.05 | 25.9 | 0.06 | 341.3 | 340.1 | 337.3 | 335.1 | 42.5 | 0.58 |
Catalyst | Base sites/(μmol·g-1) | Total base sites/(μmol·g-1) | Weak+medium/ total base sites | Acid sites /(μmol·g-1) | Total acid sites/(μmol·g-1) | ||||
---|---|---|---|---|---|---|---|---|---|
Weak | Medium | Strong | Weak | Medium | Strong | ||||
LDH1.5 | — | 1.6 | 2.5 | 4.1 | 0.39 | — | 0.4 | 1.4 | 1.8 |
LDH3 | — | 6.6 | 1.9 | 8.5 | 0.77 | — | 0.5 | 1.3 | 1.8 |
LDH5 | — | 12.9 | 1.8 | 14.7 | 0.88 | — | 0.7 | 0.9 | 1.6 |
LDH7 | — | 18.0 | 2.9 | 20.9 | 0.86 | — | 0.6 | 0.9 | 1.5 |
LDH9 | — | 21.9 | 2.1 | 24.0 | 0.91 | — | 0.5 | 0.8 | 1.3 |
MA1.5 | 5.0 | 34.7 | 7.9 | 47.6 | 0.83 | 4.9 | 4.6 | 9.3 | 18.8 |
MA3 | 4.1 | 35.7 | 11.0 | 50.8 | 0.78 | 4.0 | 5.1 | 8.3 | 17.4 |
MA5 | 3.0 | 36.3 | 13.2 | 52.5 | 0.75 | 2.8 | 6.7 | 8.7 | 18.2 |
MA7 | 1.1 | 38.3 | 21.6 | 61.0 | 0.65 | 0.8 | 5.7 | 7.5 | 14.0 |
MA9 | 1.0 | 85.6 | 44.5 | 131.1 | 0.66 | 0.3 | 5.3 | 7.6 | 13.2 |
Table 3 Surface acid-base content of LDH support and Pd/LDH catalyst
Catalyst | Base sites/(μmol·g-1) | Total base sites/(μmol·g-1) | Weak+medium/ total base sites | Acid sites /(μmol·g-1) | Total acid sites/(μmol·g-1) | ||||
---|---|---|---|---|---|---|---|---|---|
Weak | Medium | Strong | Weak | Medium | Strong | ||||
LDH1.5 | — | 1.6 | 2.5 | 4.1 | 0.39 | — | 0.4 | 1.4 | 1.8 |
LDH3 | — | 6.6 | 1.9 | 8.5 | 0.77 | — | 0.5 | 1.3 | 1.8 |
LDH5 | — | 12.9 | 1.8 | 14.7 | 0.88 | — | 0.7 | 0.9 | 1.6 |
LDH7 | — | 18.0 | 2.9 | 20.9 | 0.86 | — | 0.6 | 0.9 | 1.5 |
LDH9 | — | 21.9 | 2.1 | 24.0 | 0.91 | — | 0.5 | 0.8 | 1.3 |
MA1.5 | 5.0 | 34.7 | 7.9 | 47.6 | 0.83 | 4.9 | 4.6 | 9.3 | 18.8 |
MA3 | 4.1 | 35.7 | 11.0 | 50.8 | 0.78 | 4.0 | 5.1 | 8.3 | 17.4 |
MA5 | 3.0 | 36.3 | 13.2 | 52.5 | 0.75 | 2.8 | 6.7 | 8.7 | 18.2 |
MA7 | 1.1 | 38.3 | 21.6 | 61.0 | 0.65 | 0.8 | 5.7 | 7.5 | 14.0 |
MA9 | 1.0 | 85.6 | 44.5 | 131.1 | 0.66 | 0.3 | 5.3 | 7.6 | 13.2 |
Catalyst | ICP results(%, mass fraction) | L acidic sites/(mmol·g-1) | Medium acidic sites/(μmol·g-1) | Weak and medium base sites/(μmol·g-1) | ||
---|---|---|---|---|---|---|
Mg | Al | Pd | ||||
Fresh | 23.8 | 6.5 | 4.8 | 0.14 | 6.7 | 49.5 |
Spent | 22.9 | 6.9 | 4.6 | 0.11 | 1.0 | 33.7 |
Table 4 Metal element composition and acid-base content of fresh and spent MA5 catalysts
Catalyst | ICP results(%, mass fraction) | L acidic sites/(mmol·g-1) | Medium acidic sites/(μmol·g-1) | Weak and medium base sites/(μmol·g-1) | ||
---|---|---|---|---|---|---|
Mg | Al | Pd | ||||
Fresh | 23.8 | 6.5 | 4.8 | 0.14 | 6.7 | 49.5 |
Spent | 22.9 | 6.9 | 4.6 | 0.11 | 1.0 | 33.7 |
1 | Yuliati L., Yoshida H., Chem. Soc. Rev., 2008, 37(8), 1592—1602 |
2 | He C. X., Gong Y. L, Li S. T., Wu J. X., Lu Z. J., Li Q. X., Wang L. Z., Wu S. Q., Zhang J. L., Adv. Mater., 2024, 36(16), 2311628 |
3 | Liu Y. J., Wang R. J., Russell C. K., Jia P. L., Yao Y., Huang W., Radosz M., Gasem K. A. M., Adidharma H., Fan M. H., Coord. Chem. Rev., 2022, 470, 214691 |
4 | Klerk A. D., Energy Sci. Eng., 2015, 3(1), 60—70 |
5 | Ni Y. M., Shi L., Liu H. C., Zhang W. N., Liu Y., Zhu W. L., Liu Z. M., Catal. Sci. Technol., 2017, 7(20), 4818—4822 |
6 | Wilcox E. M., Roberts G. W., Spivey J. J., Catal. Today, 2003, 88(1/2), 83—90 |
7 | Kurioka M., Nakata K., Jintoku T., Taniguchi Y., Takaki K., Fujiware Y., Chem. Lett., 1995, 24(3), 244 |
8 | Taniguchi Y., Hayashida T., Kitamura T., Fujiwara Y., Stud. Surf. Sci. Catal., 1998, 114, 439—442 |
9 | Wilcox E. M., Roberts G. W., Spivey J. J., Appl. Catal. A, 2002, 226(1/2), 317—318 |
10 | Huang W., Tao S. Q., Low⁃Carbon Chemistry and Chemical Eng., 2023, 48(2), 1—13 |
黄伟, 陶诗琪. 低碳化学与化工, 2023, 48(2), 1—13 | |
11 | Li Y. F., Zheng K., Shen Y., Huang M. Y., Liu B., Xu Y. B., Liu X. H., J. Phys. Chem. C, 2023, 127(12), 5841—5854 |
12 | Huang W., Xie K. C., Wang J. P., Gao Z. H., Yin L. H., Zhu Q. M., J. Catal., 2001, 201, 100—104 |
13 | Ding Y. H., Huang W., Wang Y. G., Fuel Process. Technol., 2007, 88(4), 319—324 |
14 | Huang W, Sun W. Z., Li F., AIChE J., 2010, 56(5), 1279—1284 |
15 | Fan G. L., Li F., Evans D. G., Duan X., Chem. Soc. Rev., 2014, 43(20), 7040—7066 |
16 | Xu M., Wei M., Adv. Funct. Mater., 2018, 28(47), 1802943 |
17 | Li P. P., Yu F., Altaf N., Zhu M. Y., Li J. B., Dai B., Wang. Q., Materials, 2018, 11(2), 221 |
18 | Mori K., Taga T., Yamashita H., ACS Catal., 2017, 7(5), 3147—3151 |
19 | Aurnob A. K. M. K., Ding K. L., Kauffman D. R., Spivey J. J., Appl. Catal. B, 2023, 322, 122107 |
20 | Jiang X., Koizumi N., Guo X. W., Song C. S., Appl. Catal. B, 2015, 170, 173—185 |
21 | Shi C., Zhang P., Appl. Catal. B, 2015, 170, 43—52 |
22 | Lee H., Lee D. H., Song Y. H., Choi W. C., Park Y. K., Kim D. H., Chem. Eng. J., 2015, 259, 761—770 |
23 | Bai S. X., Shao Q., Wang P. T., Dai Q. G., Wang X. Y., Huang X. Q., J. Am. Chem. Soc., 2017, 139(20), 6827—6830 |
24 | Li P., Liu W., Dennis J. S., Zeng H. C., Adv. Funct. Mater., 2016, 26(31), 5658—5668 |
25 | Yan T., Li R.Y., Li Z. J., Mater. Res. Bull., 2014, 51, 97—104 |
26 | Fu T. J., Chang J. W., Shao J., Li Z. F., J. Energy Chem., 2017, 26(1), 139—146 |
27 | Tian X. K., Zhu J. L., Tang M., Wang D., Nie Y. L., Yang L. Z., Dai C., Yang C., Lu L. Q., J. Hazard. Mater., 2021, 402, 123475 |
28 | Li Y. F., Liu B., Liu J., Wang T., Shen Y., Zeng K., Jiang F., Xu Y. B., Liu X. H., New J. Chem., 2021, 45(20), 8978—8985 |
29 | Li Z. P., Geng J. X., Liu Y. Y., Sun Z. C., Wang Y., Wang A. J., Chem. J. Chinese Universities, 2023, 44(8), 20230059 |
李子鹏, 耿佳鑫, 刘颖雅, 孙志超, 王瑶, 王安杰.高等学校化学学报, 2023, 44(8), 20230059 | |
30 | Li J., Wang L., Sun W. Z., Zuo Z. J., Huang W., Chem. Ind. Eng. Prog., 2015, 34(3), 738—744 |
李静, 王乐, 孙维周, 左志军, 黄伟. 化工进展, 2015, 34(3), 738—744 | |
31 | Li Z.Q., Li Q., Huang W., Ding L., Qiu Z.G. Chem. Ind. Eng. Prog., 2020, 39(3), 1035—1042 |
李志勤, 李侨, 黄伟, 丁亮, 邱泽刚. 化工进展, 2020, 39(3), 1035—1042 | |
32 | Sha F., Tang C. Z., Tang S., Wang Q. N., Han Z., Wang J. J., Li C., J. Catal., 2021, 404, 383—392 |
33 | Daza C. E., Gallego J., Mondragón F., Moreno S., Molina R., Fuel, 2010, 89(3), 592—603 |
34 | Wang H. F., Liu W. R., Wang Y. Y., Tao N., Cai H. H., Liu J. D., Lv J. H., Ind. Eng. Chem. Res., 2020, 59(13), 5591—5600 |
35 | Chen Y., Hong H. F., Cai J. Y., Li Z. H., ChemCatChem, 2021, 13(2), 656—663 |
36 | Guo X. P., Peng Z. J., Hu M. X., Zuo C. C., Traitangwong A., Meeyoo V., Li C. S., Zhang S. J., Ind. Eng. Chem. Res., 2018, 57(28), 9102—9111 |
37 | Pan Q. S., Peng J. X., Sun T. J., Wang S., Wang S. D., Catal. Commun., 2014, 45, 74—78 |
38 | Leung D. W. J. L., Chen C. P., Buffet J. C., O'Hare D., Dalton Trans., 2020, 49(27), 9306—9311 |
39 | Peng F., Huang W., Han T., Chem. J. Chinese Universities, 2013, 34(11), 2587—2593 |
彭芬, 黄伟, 韩涛. 高等学校化学学报, 2013, 34(11), 2587—2593 | |
40 | Wu T. H., Lin D. M., Wu Y., Zhou X. P., Yan Q. G., Weng W. Z., Wan H. L., J. Nat. Gas Chem., 2007, 16(3), 316—321 |
41 | Scarano D., Bertarione S., Spoto G., Zecchina A., Areán C. O., Thin Solid Films, 2001, 400(1/2), 50—55 |
42 | Li J. W., Dou L. G., Liu Y. D., Gao Y., Hu X. C., Yu F., Li J. C., Zhang S., Shao T., Fuel Process. Technol., 2023, 242, 107648 |
43 | Ding L. P., Shi T. T., Gu J., Cui Y., Zhang Z. Y., Yang C. J., Chen T., Lin M., Wang P., Xue N. H., Peng L. M., Guo X. F., Zhu Y., Chen Z. X., Ding W. P., Chem, 2020, 6, 2673—2689 |
44 | Zhao H. B., Yu R. F., Ma S. C., Xu K. Z., Chen Y., Jiang K., Fang Y., Zhu C. X., Liu X. C., Tang Y., Wu L. Z., Wu Y. Q., Jiang Q. K., He P., Liu Z. P., Tan L., Nat. Catal., 2022, 5(9), 818—831 |
45 | Rabie A. M., Betiha M. A., Park S. E., Appl. Catal. B, 2017, 215, 50—59 |
[1] | SONG Jiaxin, FAN Xiaoqiang, LIU Baijun, ZHAO Zhen. Catalytic Behavior of Different Amounts of WO4 Active Sites on Na-W-Mn/SiO2 Catalysts for Oxidative Coupling of Methane [J]. Chem. J. Chinese Universities, 2024, 45(9): 20240174. |
[2] | JING Huifang, LIU Yi, FANG Qiang, LANG Xuelei, HAO Genyan, ZHONG Dazhong, LI Jinping, ZHAO Qiang. Preparation of Defect Sites Rich CuAg Catalyst for CO2 Reduction to C2+ Products [J]. Chem. J. Chinese Universities, 2024, 45(7): 20240082. |
[3] | LIAO Jiashu, LIU Jianxing, WANG Sishu, CHEN Bo, CHEN Jianjun, WEI Jianjun, YE Zongbiao, GOU Fujun. Kinetics of Methane Decomposition in the Catalytic Liquid Metal Reactor for Hydrogen Production [J]. Chem. J. Chinese Universities, 2024, 45(2): 20230421. |
[4] | LI Zipeng, GENG Jiaxin, LIU Yingya, SUN Zhichao, WANG Yao, WANG Anjie. Effect of Acid Property Regulation on the Performance of Pd/MIL-100(Cr) Catalyzed One-step Oxidation of Benzyl Alcohol to Acetal [J]. Chem. J. Chinese Universities, 2023, 44(8): 20230059. |
[5] | CHEN Shaochen, CHENG Min, WANG Shihui, WU Jinkui, LUO Lei, XUE Xiaoyu, JI Xu, ZHANG Changchun, ZHOU Li. Transfer Learning Modeling for Predicting the Methane and Hydrogen Delivery Capacity of Metal-organic Frameworks [J]. Chem. J. Chinese Universities, 2023, 44(2): 20220459. |
[6] | WANG Yazhi, JIA Xianzhi, ZHANG Honggang, LIU Lu, ZHAO Binran. 5Ni-5La/SiO2 Catalysts Prepared by Dielectric Barrier Discharge Plasma Applying in the Dry Reforming of Methane [J]. Chem. J. Chinese Universities, 2023, 44(2): 20220503. |
[7] | LIN Junxu, XI Zhiwei, LI Zhiping, WANG Yingchun. Palladium Catalyzed Selective Synthesis of Pyrrolofuran Derivatives and Carbamates from Propargylic Alcohols and tert⁃Butyl Isonitrile [J]. Chem. J. Chinese Universities, 2023, 44(2): 20220473. |
[8] | DENG Yuan, WANG Si, FENG Haisong, ZHANG Xin. Theoretical Calculation of Solvent Dependence in Pd-catalyzed Hydrogenation of Furfural [J]. Chem. J. Chinese Universities, 2023, 44(2): 20220486. |
[9] | AI Yanru, CAI Qijun, WANG Jiao, ZHANG Yutong, BAI Yujia, CHEN Xiaoming, LYU Rui. Construction of Carbonic Anhydrase Mimetic Cerium-containing Nanozyme for the Carbon Dioxide Fixation [J]. Chem. J. Chinese Universities, 2023, 44(12): 20230355. |
[10] | ZHANG Haiping, KONG Xue, XIA Wensheng, ZHANG Qinghong, WAN Huilin. Methane C—H Activation by Cyclo[18] Carbon-based Single-atom Transition Metal(Os, Ir) [J]. Chem. J. Chinese Universities, 2023, 44(11): 20230259. |
[11] | WU Yu, LI Xuan, YANG Hengpan, HE Chuanxin. Construction of Cobalt Single Atoms via Double-confinement Strategy for High-performance Electrocatalytic Reduction of Carbon Dioxide [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220343. |
[12] | HE Hongrui, XIA Wensheng, ZHANG Qinghong, WAN Huilin. Density-functional Theoretical Study on the Interaction of Indium Oxyhydroxide Clusters with Carbon Dioxide and Methane [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220196. |
[13] | CUI Wei, ZHAO Deyin, BAI Wenxuan, ZHANG Xiaodong, YU Jiang. CO2 Absorption in Composite of Aprotic Solvent and Iron-based Ionic Liquid [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220120. |
[14] | TAN Yan, YU Shen, LYU Jiamin, LIU Zhan, SUN Minghui, CHEN Lihua, SU Baolian. Efficient Preparation of Mesoporous γ-Al2O3 Microspheres and Performance of Pd-loaded Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220133. |
[15] | GUO Zhiqiang, YANG Boru, XI Chanjuan. Recent Advances in Reductive Functionalization of Carbon Dioxide with Borohydride Reagents [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220199. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||