Chem. J. Chinese Universities ›› 2024, Vol. 45 ›› Issue (9): 20240174.doi: 10.7503/cjcu20240174
• Physical Chemistry • Previous Articles Next Articles
SONG Jiaxin1,2, FAN Xiaoqiang2(), LIU Baijun1(
), ZHAO Zhen1,2(
)
Received:
2024-04-10
Online:
2024-09-10
Published:
2024-07-30
Contact:
FAN Xiaoqiang, LIU Baijun, ZHAO Zhen
E-mail:fanxiaoqiang1986@126.com;bjliu@cup.edu.cn;zhaozhen1586@163.com
Supported by:
CLC Number:
TrendMD:
SONG Jiaxin, FAN Xiaoqiang, LIU Baijun, ZHAO Zhen. Catalytic Behavior of Different Amounts of WO4 Active Sites on Na-W-Mn/SiO2 Catalysts for Oxidative Coupling of Methane[J]. Chem. J. Chinese Universities, 2024, 45(9): 20240174.
Catalyst | SBETa /(m2·g-1) | Vtb /(cm3·g-1) | H2 consumption/(mmol·g-1) | O2 desorption/(mmol·g-1) |
---|---|---|---|---|
SiO2 | 200 | — | — | — |
Na⁃1.0%W⁃Mn/SiO2 | 0.7 | 0.001 | 0.43 | 0.07 |
Na⁃2.5%W⁃Mn/SiO2 | 1.1 | 0.002 | 1.06 | 0.12 |
Na⁃5.0%W⁃Mn/SiO2 | 0.7 | 0.001 | 1.69 | 0.13 |
Na⁃10.0%W⁃Mn/SiO2 | 0.8 | 0.002 | 3.00 | 0.16 |
Na⁃15.0%W⁃Mn/SiO2 | 1.4 | 0.002 | 3.70 | 0.14 |
Table 1 Textural properties and the capacity of H2 consumption and O2 desorption of Na-nW-Mn/SiO2 catalysts
Catalyst | SBETa /(m2·g-1) | Vtb /(cm3·g-1) | H2 consumption/(mmol·g-1) | O2 desorption/(mmol·g-1) |
---|---|---|---|---|
SiO2 | 200 | — | — | — |
Na⁃1.0%W⁃Mn/SiO2 | 0.7 | 0.001 | 0.43 | 0.07 |
Na⁃2.5%W⁃Mn/SiO2 | 1.1 | 0.002 | 1.06 | 0.12 |
Na⁃5.0%W⁃Mn/SiO2 | 0.7 | 0.001 | 1.69 | 0.13 |
Na⁃10.0%W⁃Mn/SiO2 | 0.8 | 0.002 | 3.00 | 0.16 |
Na⁃15.0%W⁃Mn/SiO2 | 1.4 | 0.002 | 3.70 | 0.14 |
Catalyst | Eb/eV | Composition(%, molar faction) | ||||
---|---|---|---|---|---|---|
Na1s | W4f | Mn2p | Na1s | W4f | Mn2p | |
Na⁃1.0%W⁃Mn/SiO2 | 1071.4 | 34.9 | 641.9 | 7.1 | 0.1 | 1.6 |
Na⁃2.5%W⁃Mn/SiO2 | 1071.3 | 34.6 | 641.8 | 7.9 | 0.5 | 1.9 |
Na⁃5.0%W⁃Mn/SiO2 | 1071.2 | 34.6 | 641.7 | 8.5 | 0.9 | 2.0 |
Na⁃10.0%W⁃Mn/SiO2 | 1071.1 | 34.6 | 641.5 | 7.5 | 1.3 | 1.8 |
Na⁃15.0%W⁃Mn/SiO2 | 1071.1 | 34.8 | 641.2 | 6.0 | 1.9 | 1.0 |
Table 2 Binding energies(Eb) and near-surface compositions detected from XPS analysis of Na-nW-Mn/SiO2 catalysts
Catalyst | Eb/eV | Composition(%, molar faction) | ||||
---|---|---|---|---|---|---|
Na1s | W4f | Mn2p | Na1s | W4f | Mn2p | |
Na⁃1.0%W⁃Mn/SiO2 | 1071.4 | 34.9 | 641.9 | 7.1 | 0.1 | 1.6 |
Na⁃2.5%W⁃Mn/SiO2 | 1071.3 | 34.6 | 641.8 | 7.9 | 0.5 | 1.9 |
Na⁃5.0%W⁃Mn/SiO2 | 1071.2 | 34.6 | 641.7 | 8.5 | 0.9 | 2.0 |
Na⁃10.0%W⁃Mn/SiO2 | 1071.1 | 34.6 | 641.5 | 7.5 | 1.3 | 1.8 |
Na⁃15.0%W⁃Mn/SiO2 | 1071.1 | 34.8 | 641.2 | 6.0 | 1.9 | 1.0 |
Catalyst | Reaction condition | CH4 conversion(%) | C2 selectivity(%) | C2 yield(%) | Ref. | |
---|---|---|---|---|---|---|
1.5%Mn⁃4%Na2WO4/Zeo⁃A | 750 ℃, CH4/O2/N2/Ar volume ratio: 4∶1∶1∶4 | 25.0% | 64.0% | 16.0% | [ | |
Mn x O y ⁃Na2WO4/mes⁃TiO2⁃rutile | 750 ℃, CH4/O2/N2 volume ratio: 4∶1∶4 | 6.8% | 42.8% | 2.9% | [ | |
Ir⁃Mn x O y ⁃Na2WO4/MCF⁃17 | 750 ℃, CH4/O2/N2 volume ratio: 4∶1∶4 | 14.4% | 46.7% | 6.7% | [ | |
2%P/0.4%S⁃Na⁃W⁃Mn⁃Zr/SiO2 | 750 ℃, CH4/O2 volume ratio: 3∶1 | 34.1% | 48.4% | 16.5% | [ | |
Na2WO4⁃Mn x O y /COK⁃12 | 775 ℃, CH4/N2/O2 volume ratio: 40∶40∶10 | 24.0% | 60.5% | 14.5% | [ | |
NWM/Mg(5)Ti(5)Si(90) | 775 ℃, CH4/O2 volume ratio: 3∶1 | 30.9% | 62.3% | 19.3% | [ | |
1.9%Mn⁃5%Na2WO4⁃5%Ce/TiO2 | 775 ℃, CH4/O2/N2 volume ratio: 2∶1∶1 | 49.4% | 52.8% | 26.1% | [ | |
M⁃Na⁃Mn/SiO2 (M=W, Mo, Nb, V, Cr) | 775 ℃, CH4/O2/N2 volume ratio: 2∶1∶2 | 46.1% | 39.6% | 18.3% | [ | |
0.8%Na⁃3.1%W⁃2%Mn/SiO2 | 800 ℃, CH4/O2 volume ratio: 3∶1 | 29.7% | 63.2% | 18.8% | [ | |
La⁃5%Na2WO4/2%Mn/SiO2 | 800 ℃, CH4/O2 volume ratio: 2∶1 | 41.0% | 42.8% | 17.5% | [ | |
Na2WO4⁃Mn/SiO2 | 800 ℃, CH4/O2 volume ratio: 3.2∶1 | 29.5% | 66.4% | 19.6% | [ | |
Mn⁃Na2WO4/n⁃SiO2 | 800 ℃, CH4/O2 volume ratio: 4∶1 | 25.5% | 73.3% | 18.5% | [ | |
Na⁃10.0%W⁃Mn/SiO2 | 750 ℃, CH4/O2 volume ratio: 4∶1 | 32.9% | 58.3% | 19.2% | This work | |
775 ℃, CH4/O2 volume ratio: 2∶1 | 44.2% | 54.5% | 24.1% | |||
800 ℃, CH4/O2 volume ratio: 2∶1 | 45.2% | 53.3% | 24.1% |
Table 3 OCM performance of some Na-W-Mn/SiO2 catalysts
Catalyst | Reaction condition | CH4 conversion(%) | C2 selectivity(%) | C2 yield(%) | Ref. | |
---|---|---|---|---|---|---|
1.5%Mn⁃4%Na2WO4/Zeo⁃A | 750 ℃, CH4/O2/N2/Ar volume ratio: 4∶1∶1∶4 | 25.0% | 64.0% | 16.0% | [ | |
Mn x O y ⁃Na2WO4/mes⁃TiO2⁃rutile | 750 ℃, CH4/O2/N2 volume ratio: 4∶1∶4 | 6.8% | 42.8% | 2.9% | [ | |
Ir⁃Mn x O y ⁃Na2WO4/MCF⁃17 | 750 ℃, CH4/O2/N2 volume ratio: 4∶1∶4 | 14.4% | 46.7% | 6.7% | [ | |
2%P/0.4%S⁃Na⁃W⁃Mn⁃Zr/SiO2 | 750 ℃, CH4/O2 volume ratio: 3∶1 | 34.1% | 48.4% | 16.5% | [ | |
Na2WO4⁃Mn x O y /COK⁃12 | 775 ℃, CH4/N2/O2 volume ratio: 40∶40∶10 | 24.0% | 60.5% | 14.5% | [ | |
NWM/Mg(5)Ti(5)Si(90) | 775 ℃, CH4/O2 volume ratio: 3∶1 | 30.9% | 62.3% | 19.3% | [ | |
1.9%Mn⁃5%Na2WO4⁃5%Ce/TiO2 | 775 ℃, CH4/O2/N2 volume ratio: 2∶1∶1 | 49.4% | 52.8% | 26.1% | [ | |
M⁃Na⁃Mn/SiO2 (M=W, Mo, Nb, V, Cr) | 775 ℃, CH4/O2/N2 volume ratio: 2∶1∶2 | 46.1% | 39.6% | 18.3% | [ | |
0.8%Na⁃3.1%W⁃2%Mn/SiO2 | 800 ℃, CH4/O2 volume ratio: 3∶1 | 29.7% | 63.2% | 18.8% | [ | |
La⁃5%Na2WO4/2%Mn/SiO2 | 800 ℃, CH4/O2 volume ratio: 2∶1 | 41.0% | 42.8% | 17.5% | [ | |
Na2WO4⁃Mn/SiO2 | 800 ℃, CH4/O2 volume ratio: 3.2∶1 | 29.5% | 66.4% | 19.6% | [ | |
Mn⁃Na2WO4/n⁃SiO2 | 800 ℃, CH4/O2 volume ratio: 4∶1 | 25.5% | 73.3% | 18.5% | [ | |
Na⁃10.0%W⁃Mn/SiO2 | 750 ℃, CH4/O2 volume ratio: 4∶1 | 32.9% | 58.3% | 19.2% | This work | |
775 ℃, CH4/O2 volume ratio: 2∶1 | 44.2% | 54.5% | 24.1% | |||
800 ℃, CH4/O2 volume ratio: 2∶1 | 45.2% | 53.3% | 24.1% |
1 | Keller G. F., Bhasin M. M., J. Catal., 1982, 73(1), 9—19 |
2 | Zou S. H., Li Z. N., Zhou Q. Y., Pan Y., Yuan W. T., He L., Wang S. L., Wen W., Liu J. J., Wang Y., Du Y. H., Yang J. Z., Xiao J. P., Kobayashi H., Fan J., Chinese J. Catal., 2021, 42(7), 1117—1125 |
3 | Kiani D., Sourav S., Baltrusaitis J., Wachs I. E., ACS Catal., 2019, 9(7), 5912—5928 |
4 | Song J. X., Ren Y., Gao X., Fan X. Q., Liu B. J., Zhao Z., ACS Catal., 2024, 14, 5116—5131 |
5 | Zanina A., Kondratenko V. A., Lund Henrik., Li J. S., Chen J., Li Y. M., Jiang G. Y., Kondratenko E. V., J. Catal., 2023, 419, 68—79 |
6 | Zhao K., Gao Y. F., Wang X. J., Lis B. M., Liu J. C., Jin B. T., Smith J., Huang C. D., Gao W. P., Wang X. D., Wang X., Zheng A. Q., Huang Z., Hu J. L., Schömacker R., Wachs I. E., Li F. X., Nat. Commun., 2023, 14, 7749 |
7 | Cong L. N., Zhao Y. H., Li S. G., Sun Y. H., Chinese J. Catal., 2017, 38(5), 899—907 |
8 | Wu T. T., Wei Y. C., Xiong J., Yang Y. T., Wang Z. P., Han D. W., Zhao Z., Liu J., J. Energy Chem., 2024, 91, 331—344 |
9 | Fang X. Z., Xia L. H., Peng L., Luo Y., Xu J. W., L. Xu J., Xu X. L., Liu W. M., Zheng R. Y., Wang X., Chinese Chem. Lett., 2019, 30(6), 1141—1146 |
10 | Cho J. H., Kwon D., Yang I., An S., Jung J. C., Mol. Catal., 2021, 510, 111677 |
11 | Qian K., You R., Guan Y., Wen W., Tian Y. C., Pan Y., Huang W. X., ACS Catal., 2020, 10(24), 15142—15148 |
12 | Si J., Sun W., Zhao G., Lu Y., Fuel, 2022, 311(1), 122539 |
13 | Aydin Z., Kondratenko V. A., Lund H., Bartling S., Kreyenschulte C. R., Linke D., Kondratenko E. V., ACS Catal., 2020, 10(15), 8751—8764 |
14 | Fang X. P., Li S. B., Lin J. Z., Chu Y. L., J. Mol. Catal., 1992, 6(6), 7 |
方学平, 李树本, 林景治, 禇衍来. 分子催化, 1992, 6(6), 7 | |
15 | Wu J., Li S., J. Phys. Chem., 1995, 99(13), 4566—4568 |
16 | Ji S. F., Xiao T. C., Li S. B., Chou L. J., Zhang B., Xu C. Z., Hou R. L., York A. P. E, Green M. L. H., J. Catal., 2003, 220(1), 47—56 |
17 | Ji S. F., Xiao T. C., Li S. B., Xu C. Z., Hou R. L., Coleman K. S., Green M. L. H., Appl. Catal. A: Gen., 2002, 225(1/2), 271—284 |
18 | Greish A. A., Glukhov L. M., Finashina E. D., Kustov L. M., Sung J. S., Choo K. Y., Kim T. H., Mendeleev Commun., 2009, 19(6), 337—339 |
19 | Jiang Z. C., Yu C. J., Fang X. P., Li S. B., Wang H. L., J. Phys. Chem., 1993, 97(49), 12870—12875 |
20 | Si J. Q., Zhao G. F., Lan T., Ni J. Y., Sun W. D., Liu Y., Lu Y., ACS Catal., 2023, 13(2), 1033—1044 |
21 | Wang P. W., Zhang X., Zhao G. F., Liu Y., Lu Y., Chinese J. Catal., 2018, 39(8), 1395—1402 |
22 | Wu J., Zhang H., Qin S., Hu C., Appl. Catal. A: Gen., 2007, 323(3), 126—134 |
23 | Ortiz⁃Bravo C. A., Figueroa S. J. A., Portela R., Chagas C. A., Bañares M. A., Toniolo F. S., J. Catal., 2022, 408, 423—435 |
24 | Dedov A. G., Nipan G. D., Loktev A. S., Tyunyaev A. A., Ketsko V. A., Parkhomenko K. V., Moiseev I. I., Appl. Catal. A: Gen., 2011, 406(1/2), 1—12 |
25 | Matras D., Vamvakeros A., Jacques S. D. M., Grosjean N., Rollins B., Poulston S., Stenning G. B. G., Godini H. R., Drnec J., Cernik R. J., Beale A. M., Faraday Discuss., 2021, 229, 176—196 |
26 | Si J. Q., Zhao G. F., Sun W. D., Liu J. C., Guan C. R., Yang Y., Shi X. R., Lu Y., Angew. Chem. Int. Ed., 2022, 61(18), e202117201 |
27 | Gu S. S., Kang J., Lee T., Shim J., Choi J. W., Suh D. J., Lee H., Yoo C., Baik H., Choi J., Chem. Eng. J., 2023, 457(1), 141057 |
28 | Zhang X., Hu X., Liu S., Chen Y., Jin S., Wang X., Wang J., Xiao K., Wu X., J. Environ. Chem. Eng., 2022, 10(2), 107318 |
29 | Chen H., Wang Y., Lv Y. K., RSC Adv., 2016, 6(59), 54032—54040 |
30 | Kompio P. G. W. A., Brückner A., Hipler F., Auer G., Löffler E., Grünert W., J. Catal., 2012, 286, 237—247 |
31 | Pal R. S., Rana S., Sharma S. K., Khatun R., Khurana D., Khan T. S., Poddar M. K., Sharma R., Bal R., Chem. Eng. J., 2023, 458, 141379 |
32 | Qin Y., Wang H., Dong C., Qu Z. P., J. Catal., 2019, 380, 21—31 |
33 | Liu J. W., Huo M. F., Zhu Y., J. Nanosci. Nanotechnol., 2017, 17(12), 8818—8826 |
34 | Kim I., Lee G., Na H. B., Ha J. M., Jung J. C., Mol. Catal., 2017, 435, 13—23 |
35 | Gu S., Oh H. S., Choi J. W., Suh D. J., Jae J., Choi, J., Ha J. M., Appl. Catal. A: Gen., 2018, 562(25), 114—119 |
36 | Simon U., Görke O., Berthold A., Arndt S., Schomäcker R., Schubert H., Chem. Eng. J., 2011, 168(3), 1352—1359 |
37 | Hayek N. S., Lucas N. S., Damouny C. W., Gazit Oz. M., ACS Appl. Mater. Interfaces, 2017, 9(46), 40404—40411 |
38 | Yildiz M., J. Ind. Eng. Chem., 2019, 76, 488—499 |
39 | Liua W. C., Ralstona W. T., Melaet G., Somorjai G. A., Appl. Catal. A: Gen., 2017, 545, 17—23 |
40 | Zheng W., Cheng D. G., Zhu N., Chen F. Q., Zhan X. L., J. Nat. Gas Chem., 2010, 19, 15—20 |
41 | Colmenares M. G., Simon U., Yildiz M., Arndt S., Schomaecker R., Thomas A., Rosowski F., Gurlo A., Goerke O., Catal. Commun., 2016, 85, 75—78 |
42 | Yunarti R. T., Gu S., Choi J. W., Jae J., Suh D. J., Ha J. M., ACS Sustainable Chem. Eng., 2017, 5, 3667—3674 |
43 | Kim G. J., Ausenbaugh J. T., Hwang H. T., Ind. Eng. Chem. Res., 2021, 60, 3914—3921 |
44 | Mahmoodi S., Ehsani M., Ghoreishi S., J. Ind. Eng. Chem., 2010, 16, 923—928 |
45 | Ji S. F., Xiao T. C., Li S. B., Chou L. J., Zhang B., Xu C. Z., Hou R. L., York A. P. E., Green M. L. H., J. Catal., 2003, 220, 47—56 |
46 | Elkins T. W., Hagelin⁃Weaver H. E., Appl. Catal. A: Gen., 2015, 497, 96—106 |
[1] | JING Huifang, LIU Yi, FANG Qiang, LANG Xuelei, HAO Genyan, ZHONG Dazhong, LI Jinping, ZHAO Qiang. Preparation of Defect Sites Rich CuAg Catalyst for CO2 Reduction to C2+ Products [J]. Chem. J. Chinese Universities, 2024, 45(7): 20240082. |
[2] | ZHANG Huilian, YANG Xinjie, LI Jun, LI Quan, ZHANG Fujuan, ZHANG Yanli, WANG Hongbin, YANG Wenrong, PANG Pengfei. Fluorescent Probe for Detection of Hg2+ and S2- Based on N-Doped Ti3C2 MXene Quantum Dots [J]. Chem. J. Chinese Universities, 2024, 45(5): 20230504. |
[3] | SHENTU Jiangtao, LI Yiwei, LU Yanrong, LI juanqin, MAO Yebing, LI Xiangyuan. Combustion Mechanism Development Based on Minimized Reaction Network Method: C2 Fuel [J]. Chem. J. Chinese Universities, 2024, 45(1): 20230386. |
[4] | BAI Xu, HAN Chaoying, ZHU Hua. Theoretical Studies of the Potential Energy Surface and Rovibrational Spectra for Kr-C2H2 [J]. Chem. J. Chinese Universities, 2019, 40(8): 1649. |
[5] | CHEN Yaoyan,ZHAO Xin,WANG Zhe,DONG Jie,ZHANG Qinghua. Effects of Preparation Conditions on the Morphologies, Structures and Electrochemical Properties of MXene† [J]. Chem. J. Chinese Universities, 2019, 40(6): 1249. |
[6] | ZHANG Jian,ZHU Zhaowu,LEI Ze,WANG Lina,CHEN Desheng,YI Aifei,SU Hui,QI Tao. Preparation of Vanadium Oxalate by Solvent Extraction and Purification with P507 and Its Physicochemical Properties† [J]. Chem. J. Chinese Universities, 2019, 40(4): 740. |
[7] | BAI Yan, XIA Wensheng, WENG Weizheng, LIAN Mengshui, ZHAO Mingquan, WAN Huilin. Influence of Phosphate on La-based Catalysts for Oxidative Coupling of Methane† [J]. Chem. J. Chinese Universities, 2018, 39(2): 247. |
[8] | SHEN Jinrui, ZHOU Zhe, ZHOU Yuan, LU Cuifen, YANG Guichun, CHEN Zuxing. C2-Symmetric Bisprolinamide Chiral Polymer Catalyst with Double Decker Silsesquioxane in Main Chain for the Asymmetric Aldol Reactions† [J]. Chem. J. Chinese Universities, 2017, 38(11): 1968. |
[9] | YANG Yanling, DONG Lingyu, XIA Wensheng, WAN Huilin. Ca, Sr co-Doped Ceria and Its Application in Oxidative Coupling of Methane† [J]. Chem. J. Chinese Universities, 2016, 37(12): 2206. |
[10] | HE Lin1, HAN Jun1*, WANG Guang-Hui1, Heejoon Kim2, YAO Hong3. Characteristics of Perfluoroethane Thermal Decomposition [J]. Chem. J. Chinese Universities, 2009, 30(1): 125. |
[11] | CHEN Jian, TAN Kai, LIN Meng-Hai*, ZHANG Qian-Er. DFT Studies on Gas-phase Reactions Mechanism of (M2O5)+m=1,2(M=V, Nb, Ta) and C2H4 [J]. Chem. J. Chinese Universities, 2008, 29(9): 1821. |
[12] | YU Guang-Tao, LI Fei, YU Jian-Kang, Huang Xu-Ri*, SUN Chia-Chung. Theoretical Study on Structures and Stability of Ion NC2S+ [J]. Chem. J. Chinese Universities, 2007, 28(10): 1957. |
[13] | TAN Ke, TENG Yun-Lei, KAN Yu-He, YANG Shuang-Yang. DFT Study on Electronic Spectrum Property for B(C2H5)2q and Its Derivatives [J]. Chem. J. Chinese Universities, 2005, 26(7): 1284. |
[14] | BAI Hong-Tao, HUANG Xu-Ri, YU Jian-Kang, LI Ji-Lai, SUN Chia-Chong. Theoretical Study on the Reaction of Ethynyl Radical with HO2 Radical by Density Functional Theory [J]. Chem. J. Chinese Universities, 2005, 26(4): 697. |
[15] | HUANG Qiong, Wang Wen-Han, HUA Wei-Ming, YUE Ying-Hong, GAO Zi . Delamination and Intercalation of Layered Microporous Aluminophosphate [Al2P3O10(OH)2][C6NH8] [J]. Chem. J. Chinese Universities, 2004, 25(11): 2065. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||