Chem. J. Chinese Universities ›› 2024, Vol. 45 ›› Issue (9): 20240126.doi: 10.7503/cjcu20240126
• Review • Previous Articles Next Articles
ZHANG Liyuan, WANG Chasina, HU Jingxiang, ZHAN Chuanlang()
Received:
2024-03-18
Online:
2024-09-10
Published:
2024-05-15
Contact:
ZHAN Chuanlang
E-mail:clzhan@iccas.ac.cn
Supported by:
CLC Number:
TrendMD:
ZHANG Liyuan, WANG Chasina, HU Jingxiang, ZHAN Chuanlang. Research Progress on Luminescence Performance of Double Perovskite Quantum Dots Regulated by Ion Doping[J]. Chem. J. Chinese Universities, 2024, 45(9): 20240126.
Doped ion and quantum dot | Absorption/nm | Emission/nm | Lifetime/ns | PLQY(%) | Ref. |
---|---|---|---|---|---|
Na⁃Cs2AgBiCl6 | 366325 | 605 | 40—120 | — | [ |
Na K⁃Cs2AgBiCl6 | 300 | 400—581 | — | 8 | [ |
K⁃Cs2AgBiBr6 | 356 | 590 | 2.08—10.64 | 0.40—6.82 | [ |
In⁃Cs2AgBiCl6 | 372—270 | 410—395, 570 | — | 0.1—36.6 | [ |
In⁃Cs2AgBiCl6 | 350 | 570, 605 | <10—774 | 0—34(±4) | [ |
Bi⁃Cs2AgInCl6 | 270—368 | 470—580 | <10—1633 | 1—11.4 | [ |
Bi⁃Cs2AgInCl6 | 333, 367 | 426, 650 | <2—1000 | 31.4 | [ |
Bi⁃Cs2NaScCl6 | 306, 361—337, 395 | 430—590 | 15—693(431), 1198(590) | 38—60 | [ |
Bi Na⁃Cs2AgInCl6 | 318—365 | 653—827 | — | 0.6—22 | [ |
Bi Na⁃Cs2AgInCl6 | — | Bi: 573 Na: yellow | t1=1.1 t2=1600 | Bi: 21 Na: 56 | [ |
Bi Na⁃Cs2AgInCl6 | 378 | 610 | — | 20—100 | [ |
Bi Er/Bi Yb⁃Cs2AgInCl6 | Bi Er 350—372 Bi Yb 350—372 | NIR Bi Er 1540 Bi Yb 994 | 1.64×107 -2.24×107, 0.52×107 | — | [ |
Tb Bi⁃Cs2AgInCl6 | 368 | 470—580 | 1371.9 | 1—10.1 | [ |
Sb⁃Cs2MInCl6(M=Na, K) | — | 445—445(Na) 445—495(K) | — — | 82(Na) 93(K) | [ |
Sb⁃Cs2MInCl6(M=Na, K) | — | 445 | t1=9×105, 46% t2=1.016×107, 54% | 79 | [ |
Sb⁃Cs2NaInCl6 | 308 | 442 | — | 75.89 | [ |
Sb⁃Cs2NaInCl6 | 320, 335 | 427—448 | 1.3—5300 | 50.7 | [ |
Sb⁃Cs2KInCl6 | 320 | 503—515 | 4700 | 95 | [ |
Sb⁃Cs2NaYCl6 | 310—335 | 472 | — | 51.8 | [ |
Sb⁃Cs2NaTbCl6 | 271, 286, 300—378 | 622 | 4.79—5.19×107 | 1.7—46.9 | [ |
Sb⁃Cs2Ag/NaTbCl6 | 269—269, 360 | 489、 548, 621 | 3.3×107/5.0×107—7.5×107 | 4/12—24 | [ |
Table 1 Luminescence performance of double perovskite quantum dots doping with main group metals
Doped ion and quantum dot | Absorption/nm | Emission/nm | Lifetime/ns | PLQY(%) | Ref. |
---|---|---|---|---|---|
Na⁃Cs2AgBiCl6 | 366325 | 605 | 40—120 | — | [ |
Na K⁃Cs2AgBiCl6 | 300 | 400—581 | — | 8 | [ |
K⁃Cs2AgBiBr6 | 356 | 590 | 2.08—10.64 | 0.40—6.82 | [ |
In⁃Cs2AgBiCl6 | 372—270 | 410—395, 570 | — | 0.1—36.6 | [ |
In⁃Cs2AgBiCl6 | 350 | 570, 605 | <10—774 | 0—34(±4) | [ |
Bi⁃Cs2AgInCl6 | 270—368 | 470—580 | <10—1633 | 1—11.4 | [ |
Bi⁃Cs2AgInCl6 | 333, 367 | 426, 650 | <2—1000 | 31.4 | [ |
Bi⁃Cs2NaScCl6 | 306, 361—337, 395 | 430—590 | 15—693(431), 1198(590) | 38—60 | [ |
Bi Na⁃Cs2AgInCl6 | 318—365 | 653—827 | — | 0.6—22 | [ |
Bi Na⁃Cs2AgInCl6 | — | Bi: 573 Na: yellow | t1=1.1 t2=1600 | Bi: 21 Na: 56 | [ |
Bi Na⁃Cs2AgInCl6 | 378 | 610 | — | 20—100 | [ |
Bi Er/Bi Yb⁃Cs2AgInCl6 | Bi Er 350—372 Bi Yb 350—372 | NIR Bi Er 1540 Bi Yb 994 | 1.64×107 -2.24×107, 0.52×107 | — | [ |
Tb Bi⁃Cs2AgInCl6 | 368 | 470—580 | 1371.9 | 1—10.1 | [ |
Sb⁃Cs2MInCl6(M=Na, K) | — | 445—445(Na) 445—495(K) | — — | 82(Na) 93(K) | [ |
Sb⁃Cs2MInCl6(M=Na, K) | — | 445 | t1=9×105, 46% t2=1.016×107, 54% | 79 | [ |
Sb⁃Cs2NaInCl6 | 308 | 442 | — | 75.89 | [ |
Sb⁃Cs2NaInCl6 | 320, 335 | 427—448 | 1.3—5300 | 50.7 | [ |
Sb⁃Cs2KInCl6 | 320 | 503—515 | 4700 | 95 | [ |
Sb⁃Cs2NaYCl6 | 310—335 | 472 | — | 51.8 | [ |
Sb⁃Cs2NaTbCl6 | 271, 286, 300—378 | 622 | 4.79—5.19×107 | 1.7—46.9 | [ |
Sb⁃Cs2Ag/NaTbCl6 | 269—269, 360 | 489、 548, 621 | 3.3×107/5.0×107—7.5×107 | 4/12—24 | [ |
Doped ion and quantum dot | Absorption/nm | Emission/nm | Lifetime/ns | PLQY(%) | Ref. |
---|---|---|---|---|---|
Yb/Er/YbEr⁃Cs2AgInCl6 | 240 | 395—996/1573 | — | 0.5—3.6/0.05 | [ |
Yb/Mn⁃Cs2AgBiCl6 | 366 | 680—1000 | Vis 20.0—26.0 NIR 0.97—1.44×107 | — | [ |
Nd⁃Cs2AgIn0.99Bi0.01Cl6 | 365 | 630, 890, 1074 | STE 10.05—280.26 | NIR 0—56.7 | [ |
Cs2NaScCl6 | 313 | 445 | 1059 | 1.6—29.05 | [ |
Er⁃Cs2NaScCl6 | — | NIR1540 | — | NIR 28.3 | [ |
Cs2NaHoCl6 | 321, 362, 402 | 452, 540, 646 | — | 82.3 | [ |
Cs2NaLnCl6 | 307, 363 | 438 | 7.16 | 68.5 | [ |
Cs2AgLnCl6 | 350 | Sm: 450 Gd: 435 Eu: 615 Er: 440, 555 | 3.0 3.3 4.7×106 1.8, 2.6 | 1.17 3.09 1.16 7.37 | [ |
Na ErYb⁃Cs2AgBiCl6 | — | NIR 995/1540 | 1190 1170 | 19 4.3 | [ |
Na Bi Nd⁃Cs2AgInCl6 | 320—370 | STE 610 NIR 890 | STE 0.19—2030 NIR 2.25—2.99×107 | NIR 0.16—30.3 | [ |
Sb Yb⁃Cs2AgInCl6 | — | 600—660 | — | NIR 50 | [ |
Cr Er⁃Cs2AgInCl6 | 350—350, 560, 800 | 1010, 1540 | — | NIR 29 | [ |
Cr Ln(Er/Tm)⁃Cs2NaScCl6 | — | 457—970 1540/1220 | 13×107 5.5×107 | NIR 26 NIR 56 | [ |
Tb Ho⁃Cs2AgInCl6 | 350 | 530 | 6.65—4.85×107 | — | [ |
Table 2 Luminescence performance of double perovskite quantum dots doped with rare earth metals
Doped ion and quantum dot | Absorption/nm | Emission/nm | Lifetime/ns | PLQY(%) | Ref. |
---|---|---|---|---|---|
Yb/Er/YbEr⁃Cs2AgInCl6 | 240 | 395—996/1573 | — | 0.5—3.6/0.05 | [ |
Yb/Mn⁃Cs2AgBiCl6 | 366 | 680—1000 | Vis 20.0—26.0 NIR 0.97—1.44×107 | — | [ |
Nd⁃Cs2AgIn0.99Bi0.01Cl6 | 365 | 630, 890, 1074 | STE 10.05—280.26 | NIR 0—56.7 | [ |
Cs2NaScCl6 | 313 | 445 | 1059 | 1.6—29.05 | [ |
Er⁃Cs2NaScCl6 | — | NIR1540 | — | NIR 28.3 | [ |
Cs2NaHoCl6 | 321, 362, 402 | 452, 540, 646 | — | 82.3 | [ |
Cs2NaLnCl6 | 307, 363 | 438 | 7.16 | 68.5 | [ |
Cs2AgLnCl6 | 350 | Sm: 450 Gd: 435 Eu: 615 Er: 440, 555 | 3.0 3.3 4.7×106 1.8, 2.6 | 1.17 3.09 1.16 7.37 | [ |
Na ErYb⁃Cs2AgBiCl6 | — | NIR 995/1540 | 1190 1170 | 19 4.3 | [ |
Na Bi Nd⁃Cs2AgInCl6 | 320—370 | STE 610 NIR 890 | STE 0.19—2030 NIR 2.25—2.99×107 | NIR 0.16—30.3 | [ |
Sb Yb⁃Cs2AgInCl6 | — | 600—660 | — | NIR 50 | [ |
Cr Er⁃Cs2AgInCl6 | 350—350, 560, 800 | 1010, 1540 | — | NIR 29 | [ |
Cr Ln(Er/Tm)⁃Cs2NaScCl6 | — | 457—970 1540/1220 | 13×107 5.5×107 | NIR 26 NIR 56 | [ |
Tb Ho⁃Cs2AgInCl6 | 350 | 530 | 6.65—4.85×107 | — | [ |
Doped ion and quantum dot | Absorption/nm | Emission/nm | Lifetime/ns | PLQY(%) | Ref. |
---|---|---|---|---|---|
Mn⁃Cs2AgInCl6 | 290 | 560—620 | 107 | (1.6±1)—(16±4) | [ |
Mn⁃Cs2NaBiCl6 | — | 345—590 | — | 15 | [ |
Mn⁃Cs2NaIn x Bi1-x Cl6 | 326 | 583—614 | 3—9×107 | 38—44.6 | [ |
Mn⁃Cs2NaScCl6 | — | 445—635 | — | 29.05 | [ |
Mn⁃Cs2NaTbCl6 | 278 | 548—622 | 5.10—13.28×107 | 52.6 | [ |
Ag⁃Cs2NaInCl6 | 269 | 535 | — | 31.1 | [ |
Ag/Mn⁃Cs2NaBiCl6 | 324—356 | 375—613/585 | 4.74×105—1.058×106, 385×106 | 1.7—20/3 | [ |
Cu⁃Cs2(Ag/Na)InCl6 | 380—410 | 605 | 6400—3900 | 19.0—62.6 | [ |
Cu⁃Cs2AgInCl6 | 344—427 | 450 | — | — | [ |
Cu⁃Cs2AgSbCl6 | 477—1240 | — | — | — | [ |
Cu⁃Cs2AgInCl6 | 344—561 | — | — | — | [ |
Fe⁃Cs2NaBiCl6 | — | 585 | 38 | — | [ |
Table 3 Luminescence performance of double perovskite quantum dots doped with transition metals
Doped ion and quantum dot | Absorption/nm | Emission/nm | Lifetime/ns | PLQY(%) | Ref. |
---|---|---|---|---|---|
Mn⁃Cs2AgInCl6 | 290 | 560—620 | 107 | (1.6±1)—(16±4) | [ |
Mn⁃Cs2NaBiCl6 | — | 345—590 | — | 15 | [ |
Mn⁃Cs2NaIn x Bi1-x Cl6 | 326 | 583—614 | 3—9×107 | 38—44.6 | [ |
Mn⁃Cs2NaScCl6 | — | 445—635 | — | 29.05 | [ |
Mn⁃Cs2NaTbCl6 | 278 | 548—622 | 5.10—13.28×107 | 52.6 | [ |
Ag⁃Cs2NaInCl6 | 269 | 535 | — | 31.1 | [ |
Ag/Mn⁃Cs2NaBiCl6 | 324—356 | 375—613/585 | 4.74×105—1.058×106, 385×106 | 1.7—20/3 | [ |
Cu⁃Cs2(Ag/Na)InCl6 | 380—410 | 605 | 6400—3900 | 19.0—62.6 | [ |
Cu⁃Cs2AgInCl6 | 344—427 | 450 | — | — | [ |
Cu⁃Cs2AgSbCl6 | 477—1240 | — | — | — | [ |
Cu⁃Cs2AgInCl6 | 344—561 | — | — | — | [ |
Fe⁃Cs2NaBiCl6 | — | 585 | 38 | — | [ |
1 | Bhalla S., Melnekoff D. T., Aleman A., Leshchenko V., Restrepo P., Keats J., Onel K., Sawyer J. R., Madduri D., Richter J., Sci. Adv., 2021, 7(47), eabg9551 |
2 | Stranks S. D., Eperon G. E., Grancini G., Menelaou C., Alcocer M. J., Leijtens T., Herz L. M., Petrozza A., Snaith H. J., Science, 2013, 342(6156), 341—344 |
3 | Green M. A., Ho⁃Baillie A., Snaith H. J., Nature Photonics, 2014, 8(7), 506—514 |
4 | Wu H., Ge Y., Niu G., Tang J., Matter, 2021, 4(1), 144—163 |
5 | Zhou Y., Chen J., Bakr O. M., Mohammed O. F., ACS Energy Lett., 2021, 6(2), 739—768 |
6 | Kojima A., Teshima K., Shirai Y., Miyasaka T., J. Am. Chem. Soc., 2009, 131(17), 6050—6051 |
7 | Liang Z., Zhang Y., Xu H., Chen W., Liu B., Zhang J., Zhang H., Wang Z., Kang D. H., Zeng J., Nature, 2023, 624(7992), 557—563 |
8 | Jiang J., Chu Z., Yin Z., Li J., Yang Y., Chen J., Wu J., You J., Zhang X., Adv. Mater., 2022, 34(36), 2204460 |
9 | Jiang Y., Sun C., Xu J., Li S., Cui M., Fu X., Liu Y., Liu Y., Wan H., Wei K., Nature, 2022, 612(7941), 679—684 |
10 | Kim J. S., Heo J. M., Park G. S., Woo S. J., Cho C., Yun H. J., Kim D. H., Park J., Lee S. C., Park S. H., Nature, 2022, 611(7937), 688—694 |
11 | Chen K., Schünemann S., Song S., Tüysüz H., Chem. Soc. Rev., 2018, 47(18), 7045—7077 |
12 | Chung I., Lee B., He J., Chang R. P., Kanatzidis M. G., Nature, 2012, 485(7399), 486—489 |
13 | Tang H., Xu Y., Hu X., Hu Q., Chen T., Jiang W., Wang L., Jiang W., Adv. Sci., 2021, 8(7), 2004118 |
14 | Wei Y., Cheng Z., Lin J., Chem. Soc. Rev., 2019, 48(1), 310—350 |
15 | Smith M. D., Karunadasa H. I., Acc. Chem. Res., 2018, 51(3), 619—627 |
16 | Yao S., Wang J., Yang J., Yao H., Acc. of Chem. Res., 2021, 54(2), 441—451 |
17 | Yang X., Zhang X., Deng J., Chu Z., Jiang Q., Meng J., Wang P., Zhang L., Yin Z., You J., Nature Commun., 2018, 9(1), 570 |
18 | Veldhuis S. A., Boix P. P., Yantara N., Li M., Sum T. C., Mathews N., Mhaisalkar S. G., Adv. Mater., 2016, 28(32), 6804—6834 |
19 | Yang B., Chen J., Yang S., Hong F., Sun L., Han P., Pullerits T., Deng W., Han K., Angew. Chem., 2018, 130(19), 5457—5461 |
20 | Ahmad R., Zdrazil L., Kalytchuk S., Naldoni A., Rogach A. L., Schmuki P., Zboril R., Kment S., ACS Appl. Mater. Interfaces, 2021, 13(40), 47845—47859 |
21 | Luo J., Wang X., Li S., Liu J., Guo Y., Niu G., Yao L., Fu Y., Gao L., Dong Q., Nature, 2018, 563(7732), 541—545 |
22 | Lamba R. S., Basera P., Bhattacharya S., Sapra S., J. Phys. Chem. Lett., 2019, 10(17), 5173—5181 |
23 | Vashishtha P., Griffith B. E., Fang Y., Jaiswal A., Nutan G. V., Bartók A. P., White T., Hanna J. V., J. Mater. Chem. A, 2022, 10(7), 3562—3578 |
24 | Sun R., Jiang W., Wang S., Cui W., Qi L., Pan K., ACS Appl. Nano Mater., 2023, 6(16), 15247—15254 |
25 | Yang B., Mao X., Hong F., Meng W., Tang Y., Xia X., Yang S., Deng W., Han K., J. Am. Chem. Soc., 2018, 140(49), 17001—17006 |
26 | Karmakar A., Bernard G. M., Meldrum A., Oliynyk A. O., Michaelis V. K., J. Am. Chem. Soc., 2020, 142(24), 10780—10793 |
27 | Liu Y., Jing Y., Zhao J., Liu Q., Xia Z., Chem. Mater., 2019, 31(9), 3333—3339 |
28 | Zhang Y., Zhang Z., Yu W., He Y., Chen Z., Xiao L., Shi J. J., Guo X., Wang S., Qu B., Adv. Sci., 2022, 9(2), 2102895 |
29 | Zeng Z., Sun M., Zhang S., Zhang H., Shi X., Ye S., Huang B., Du Y., Yan C. H., Adv. Funct. Mater., 2022, 32(32), 2204780 |
30 | Locardi F., Sartori E., Buha J., Zito J., Prato M., Pinchetti V., Zaffalon M. L., Ferretti M., Brovelli S., Infante I., ACS Energy Lett., 2019, 4(8), 1976—1982 |
31 | Zheng W., Sun R., Liu Y., Wang X., Liu N., Ji Y., Wang L., Liu H., Zhang Y., ACS Appl. Mater. Interfaces, 2021, 13(5), 6404—6410 |
32 | Jin S., Li R., Zhu J., Pang T., Wu T., Zhan H., Zheng Y., Huang F., Chen X., Chen D., Mater. Horizons, 2023, 10(4), 1406—1415 |
33 | Arfin H., Kaur J., Sheikh T., Chakraborty S., Nag A., Angew. Chem. Inter. Ed., 2020, 59(28), 11307—11311 |
34 | Liu Y., Rong X., Li M., Molokeev M. S., Zhao J., Xia Z., Angew. Chem. Inter. Ed., 2020, 59(28), 11634—11640 |
35 | Noculak A., Morad V., McCall K. M., Yakunin S., Shynkarenko Y., Wörle M., Kovalenko M. V., Chem. Mater., 2020, 32(12), 5118—5124 |
36 | Gray M. B., Hariyani S., Strom T. A., Majher J. D., Brgoch J., Woodward P. M., J. Mater. Chem. C, 2020, 8(20), 6797—6803 |
37 | Zeng R., Zhang L., Xue Y., Ke B., Zhao Z., Huang D., Wei Q., Zhou W., Zou B., J. Phy. Chem. Lett., 2020, 11(6), 2053—2061 |
38 | Zhu D., Zaffalon M. L., Zito J., Cova F., Meinardi F., de Trizio L., Infante I., Brovelli S., Manna L., ACS Energy Lett., 2021, 6(6), 2283—2292 |
39 | Cong M., Zhang Q., Yang B., Chen J., Xiao J., Zheng D., Zheng T., Zhang R., Qing G., Zhang C., Nano Lett., 2021, 21(20), 8671—8678 |
40 | Wang Z., Zhang R., Mao X., Zheng D., Liu S., Liu F., Han K., Yang B., J. Phy. Chem. Lett., 2022, 13(36), 8613—8619 |
41 | Chen Y., Wu J., Zhang S., Zhu X., Zou B., Zeng R., J. Phy. Chem. Lett., 2023, 14(31), 7108—7117 |
42 | Zhou W., Li C., Wu T., Liu R., Ding Z., Zhang R., Yu Y., Han P., Lu R., J. Phy. Chem. Lett., 2023, 14(38), 8577—8583 |
43 | Lee W., Hong S., Kim S., J. Phy. Chem. C, 2019, 123(4), 2665—2672 |
44 | Chen N., Cai T., Li W., Hills⁃Kimball K., Yang H., Que M., Nagaoka Y., Liu Z., Yang D., Dong A., ACS Appl. Mater. Interfaces, 2019, 11(18), 16855—16863 |
45 | Zhao J., Pan G., Zhu Y., Liu K., You W., Chen X., Song H., Mao Y., ACS Appl. Mater. Interfaces, 2022, 14(37), 42215—42222 |
46 | Zhang R., Wang Z., Xu X., Mao X., Xiong J., Yang Y., Han K., Adv. Opt. Mater., 2021, 9(19), 2100689 |
47 | Zhao C., Gao Y., Song T., Wang J., Qiu J., J. Phys. Chem. Lett., 2023, 14(40), 9011—9018 |
48 | Sun R., Jia M., Chen X., Zhang F., Ma Z., Liu Y., Zhang J., Lian L., Han Y., Li M., Laser Photon. Rev., 2023, 2301028 |
49 | Sun L., Dong B., Sun J., Wang Y., Sun R., Hu S., Zhou B., Xu W., Bai X., Xu L., Laser Photon. Rev., 2023, 17(8), 2300045 |
50 | Feng J., Cao Q., Xue J., Lu H., Inorg. Chem., 2024, 63(4), 2241—2246 |
51 | Pei Y., Tu D., Li C., Han S., Xie Z., Wen F., Wang L., Chen X., Angew. Chem. Inter. Ed., 2022, 61(30), e202205276 |
52 | Jin S., Yuan H., Pang T., Zhang M., He Y., Zhuang B., Wu T., Zheng Y., Chen D., Adv. Funct. Mater., 2023, 33(50), 2304577 |
53 | Cao L., Jia X., Gan W., Ma C. G., Zhang J., Lou B., Wang J., Adv. Funct. Mater., 2023, 33(13), 2212135 |
54 | Gan W., Cao L., Gu S., Lian H., Xia Z., Wang J., Chem. Mater., 2023, 35(14), 5291—5299 |
55 | Huang W., Peng H., Huang J., Yang Y., Wei Q., Ke B., Khan M. S., Zhao J., Zou B., EcoMat, 2024, e12437 |
56 | Wu Y., Lin L., Lu P., Ma W., Li Z., Zhang M., Yang Y., Ju N., Zhang Y., Liao H., ACS Appl. Opt. Mater., 2023, 1(10), 1697—1705 |
57 | Locardi F., Cirignano M., Baranov D., Dang Z., Prato M., Drago F., Ferretti M., Pinchetti V., Fanciulli M., Brovelli S., J. Am. Chem. Soc., 2018, 140(40), 12989—12995 |
58 | Majher J. D., Gray M. B., Strom T. A., Woodward P. M., Chem. Mater., 2019, 31(5), 1738—1744 |
59 | Han P., Zhang X., Luo C., Zhou W., Yang S., Zhao J., Deng W., Han K., ACS Central Science, 2020, 6(4), 566—572 |
60 | Chen Y., Zeng R., Wei Q., Zhang S., Luo B., Chen C., Zhu X., Cao S., Zou B., Zhang J. Z., J. Phys. Chem. Lett., 2022, 13(36), 8529—8536 |
61 | Han P., Mao X., Yang S., Zhang F., Yang B., Wei D., Deng W., Han K., Angew. Chem., 2019, 131(48), 17391—17395 |
62 | Yao M. M., Wang L., Yao J. S., Wang K. H., Chen C., Zhu B. S., Yang J. N., Wang J. J., Xu W. P., Zhang Q., Adv. Opt. Mater., 2020, 8(8), 1901919 |
63 | Cheng X., Xie Z., Zheng W., Li R., Deng Z., Tu D., Shang X., Xu J., Gong Z., Li X., Adv. Sci., 2022, 9(7), 2103724 |
64 | Li Y., Li J., Ye S., Liu Y., Meng L., Yao H., Chen Q., Phys. Chem. Chem. Phys., 2024, 26(8), 6984—6990 |
65 | Karmakar A., Dodd M. S., Agnihotri S., Ravera E., Michaelis V. K., Chem. Mater., 2018, 30(22), 8280—8290 |
66 | Liao Q., Chen J., Zhou L., Wei T., Zhang L., Chen D., Huang F., Pang Q., Zhang J. Z., J. Phys. Chem. Lett., 2020, 11(19), 8392—8398 |
67 | Udavant R., Thawarkar S., Rondiya S., Shelke A., Aher R., Ajithkumar T. G., Cross R. W., Dzade N. Y., Jadkar S., Inorg. Chem., 2023, 62(12), 4861—4871 |
68 | Lei Z., Yang X., Bai C., Dai K., Cheng S., Small, 2018, 14(11), 1703762 |
[1] | TONG Ti*, ZHAO Yangyang, FU Yilin, SHAN Guiye. Special Surface Enhanced Raman Scattering on Lung Cancer Tissues Based on Au/Cu Nanorods Substrate† [J]. Chem. J. Chinese Universities, 2017, 38(9): 1536. |
[2] | YANG Mu, WANG Xiao-Na, XU Jin-Wu, WANG Ge. Preparation and Catalytic Properties of Fe-Ti-MCM-41 [J]. Chem. J. Chinese Universities, 2012, 33(07): 1559. |
[3] | Lü Bing-Feng, LI Guo-Ping*, LUO Yun-Jun. Gold Nanoparticles Prepared by Aqueous Synthesis and Its Fluorescence Properties [J]. Chem. J. Chinese Universities, 2010, 31(8): 1502. |
[4] | YANG Qiu-Jing, XU Zi-Li, XIE Chao, XUE Bao-Yong, DU Yao-Guo, ZHANG Jia-Hua . Effect of Eu 3+ Doping on the Photocatalytic Activity of Nanoparticles TiO2 [J]. Chem. J. Chinese Universities, 2004, 25(9): 1711. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||