Chem. J. Chinese Universities ›› 2024, Vol. 45 ›› Issue (5): 20240044.doi: 10.7503/cjcu20240044
• Physical Chemistry • Previous Articles Next Articles
HU Die, SUN Qing, MENG Xiangxin, LING Jinxiang, CHENG Bin, KANG Bonan()
Received:
2024-01-23
Online:
2024-05-10
Published:
2024-03-14
Contact:
KANG Bonan
E-mail:kangbn@jlu.edu.cn
Supported by:
CLC Number:
TrendMD:
HU Die, SUN Qing, MENG Xiangxin, LING Jinxiang, CHENG Bin, KANG Bonan. Preparation of Efficient and Stable Perovskite Solar Cells Based on Amino Acid Derivative Hydrochloride Additives[J]. Chem. J. Chinese Universities, 2024, 45(5): 20240044.
PSC | VOC/V | JSC/(mA·cm-2) | FF(%) | PCE(%) |
---|---|---|---|---|
Control | 1.108 | 21.324 | 75.26 | 17.79 |
With 0.3% PGMECl | 1.114 | 22.653 | 81.68 | 20.61 |
With 0.5% PGMECl | 1.134 | 22.883 | 81.07 | 21.04 |
With 1.0% PGMECl | 1.128 | 21.733 | 79.06 | 19.38 |
Table 1 Parameters of the PSCs with different amounts of PGMECl
PSC | VOC/V | JSC/(mA·cm-2) | FF(%) | PCE(%) |
---|---|---|---|---|
Control | 1.108 | 21.324 | 75.26 | 17.79 |
With 0.3% PGMECl | 1.114 | 22.653 | 81.68 | 20.61 |
With 0.5% PGMECl | 1.134 | 22.883 | 81.07 | 21.04 |
With 1.0% PGMECl | 1.128 | 21.733 | 79.06 | 19.38 |
PSCs | Scan direction | VOC/V | JSC/(mA·cm-2) | FF(%) | PCE(%) | HI |
---|---|---|---|---|---|---|
Control | Reverse | 1.074 | 22.019 | 78.76 | 18.63 | 4.8 |
Forward | 1.064 | 21.971 | 75.86 | 17.73 | ||
With PGMECl | Reverse | 1.134 | 22.883 | 81.07 | 21.04 | 3.7 |
Forward | 1.128 | 22.571 | 79.17 | 20.26 |
Table 2 Champion performance of devices prepared with and without PGMECl treatment measured under reverse and forward scan
PSCs | Scan direction | VOC/V | JSC/(mA·cm-2) | FF(%) | PCE(%) | HI |
---|---|---|---|---|---|---|
Control | Reverse | 1.074 | 22.019 | 78.76 | 18.63 | 4.8 |
Forward | 1.064 | 21.971 | 75.86 | 17.73 | ||
With PGMECl | Reverse | 1.134 | 22.883 | 81.07 | 21.04 | 3.7 |
Forward | 1.128 | 22.571 | 79.17 | 20.26 |
1 | Kojima A., Teshima K., Shirai Y., Miyasaka T., J. Am. Chem. Soc., 2009, 131(17), 6050—6051 |
2 | Xu F., Zhang M., Li Z. K., Yang X. Y., Zhu R., Adv. Energy Mater., 2023, 13(13), 2203911 |
3 | Shi D., Adinolfi V., Comin R., Yuan M. J., Alarousu E., Buin A., Chen Y., Hoogland S., Rothenberger A., Katsiev K., Losovyj Y., Zhang X., Dowben P. A., Mohammed O. F., Sargent E. H., Bakr O. M., Science, 2015, 347(6221), 519—522 |
4 | Tong J. H., Song Z. N., Kim D. H., Chen X. H., Chen C., Palmstrom A. F., Ndione P. F., Reese M. O., Dunfield S. P., Reid O. G., Liu J., Zhang F., Harvey S. P., Li Z., Christensen S. T., Teeter G., Zhao D. W., Al⁃Jassim M. M., van Hest M., Beard M. C., Shaheen S. E., Berry J. J., Yan Y. F., Zhu K., Science, 2019, 364(6439), 475 |
5 | Miyata A., Mitioglu A., Plochocka P., Portugall O., Wang J. T. W., Stranks S. D., Snaith H. J., Nicholas R. J., Nat. Phys., 2015, 11(7), 582—594 |
6 | Miao Z. P., Cao Q. L., Peng S. H., Zhu H., Yuan F. F., Liang Y. C., Zhang T., Zhao R. D., Li P. W., Zhang Y. Q., Song Y. L., Adv. Funct. Mater., 2023, 34(4), 2311135 |
7 | Ball J. M., Petrozza A., Nat. Energy, 2016, 1, 1—13 |
8 | Jiang Q., Tong J., Xian Y., Kerner R. A., Dunfield S. P., Xiao C., Scheidt R. A., Kuciauskas D., Wang X., Hautzinger M. P., Tirawat R., Beard M. C., Fenning D. P., Berry J. J., Larson B. W., Yan Y., Zhu K., Nature, 2022, 611(7935), 278—283 |
9 | Zhou J., Liu Z., Yu P., Tong G., Chen R., Ono L. K., Chen R., Wang H., Ren F., Liu S., Wang J., Lan Z., Qi Y., Chen W., Nat. Commun., 2023, 14(1), 6120 |
10 | Lin D. X., Zhan Z. Y., Huang X. L., Liu P. Y., Xie W. G., Mater. Today Adv., 2022, 16, 100277 |
11 | Troughton J., Hooper K., Watson T. M., Nano Energy, 2017, 39, 60—68 |
12 | Zhang T. Y., Chen Y. T., Kan M., Xu S. M., Miao Y. F., Wang X. T., Ren M., Chen H. R., Liu X. M., Zhao Y. X., Research, 2021, 2021, 9765106 |
13 | Hassan A. L., Wang Z. J., Ahn Y. H., Azam M., Khan A. A., Farooq U., Zubair M., Cao Y., Nano Energy, 2022, 101, 107579 |
14 | Chao L. F., Niu T. T., Gao W. Y., Ran C. X., Song L., Chen Y. H., Huang W., Adv. Mater., 2021, 33(14), 2005410 |
15 | Rezaee E., Zhang W., Silva S. R. P., Small, 2021, 17(25), 2008145 |
16 | Mahmud M. A., Duong T., Peng J., Wu Y. L., Shen H. P., Walter D., Nguyen H. T., Mozaffari N., Tabi G. D., Catchpole K. R., Weber K. J., White T. P., Adv. Funct. Mater., 2022, 32(3), 2009164 |
17 | Cao D. H., Stoumpos C. C., Yokoyama T., Logsdon J. L., Song T. B., Farha O. K., Wasielewski M. R., Hupp J. T., Kanatzidis M. G., ACS Energy Lett., 2017, 2(5), 982—990 |
18 | Wang H. L., Pan Y. Y., Li X. G., Shi Z. J., Zhang X., Shen T. Y., Tang Y., Fan W. Y., Zhang Y. C., Liu F. C., Wang Y. X., Liu K., Wang Y. Y., Li C. Y., Hu T. X., Deng L. L., Wang J., Yu A. R., Dong H. L., Yang Y. G., Xue L., Shi L., Zhan Y. Q., ACS Energy Lett., 2022, 7(10), 3187—3196 |
19 | Wu P. F., Wang S. R., Heo J. H., Liu H. L., Chen X. H., Li X. G., Zhang F., Nano⁃Micro Lett., 2023, 15(1), 114 |
20 | Xiong J., Liu N. H., Hu X. T., Qi Y. F., Liu W. Z., Dai J. Q., Zhang Y. S., Dai Z. J., Zhang X. W., Huang Y., Zhang Z. L., Dai Q. L., Zhang J., Adv. Energy Mater., 2022, 12(33), 2201787 |
21 | Liu C., Huang K. X., Hu B. H., Li Y. R., Zhang L. Z., Zhou X. Y., Liu Y. L., Liu Z. X., Sheng Y. F., Chen S., Wang X. Z., Xu B. M., Adv. Funct. Mater., 2023, 33(22), 2212698 |
22 | Daboczi M., Ratnasingham S. R., Mohan L., Pu C. F., Hamilton I., Chin Y. C., McLachlan M. A., Kim J. S., ACS Energy Lett., 2021, 6(11), 3970—3981 |
23 | Gong J., Hao M. W., Zhang Y. L., Liu M. Z., Zhou Y. Y., Angew. Chem. Int. Ed., 2022, 61(10), 2112022 |
24 | Lee J. W., Bae S. H., Hsieh Y. T., De Marco N., Wang M. K., Sun P. Y., Yang Y., Chem, 2017, 3(2), 290—302 |
25 | Noel N. K., Abate A., Stranks S. D., Parrott E. S., Burlakov V. M., Goriely A., Snaith H. J., ACS Nano, 2014, 8(10), 9815—9821 |
26 | Bai S., Da P. M., Li C., Wang Z. P., Yuan Z. C., Fu F., Kawecki M., Liu X. J., Sakai N., Wang J. T. W., Huettner S., Buecheler S., Fahlman M., Gao F., Snaith H. J., Nature, 2019, 571(7764), 245 |
27 | Ye M. D., Biesold G. M., Zhang M., Wang W. G., Bai T., Lin Z. Q., Nano Today, 2021, 40, 101286 |
28 | Zong B. B., Zhang Z. Z., Shun Q., Kang B. N., Silva S. R. P., Lu G. Y., Adv. Electron. Mater., 2021, 7(6), 2100165 |
29 | Alexander A., Srivastava V., Ravichandran P., Pulikodan V. K., Anitha B., Joseph A., Namboothiry M. A. G., J. Phys. D, 2022, 55(26), 265501 |
30 | Liu D. C., Wang X., Wang X. Z., Zhang B. Q., Sun X. H., Li Z. P., Shao Z. P., Mao S., Wang L., Cui G. L., Pang S. P., Angew. Chem. Int. Ed., 2023, 62(18), 2301574 |
31 | Feng Z., Weng C., Hua Y., Chen X., Huang S., Chem. Eng. J., 2023, 475, 146498 |
32 | Zhang Z. A., Jiang J. K., Liu X., Wang X., Wang L. Y., Qiu Y. K., Zhang Z. F., Zheng Y. T., Wu X. Y., Liang J. H., Tian C. C., Chen C. C., Small, 2022, 18(6), 2105184 |
33 | Rocks C., Svrcek V., Velusamy T., Macias⁃Montero M., Maguire P., Mariotti D., Nano Energy, 2018, 50, 245—255 |
34 | Nandigana P., Saminathan B., Sriram P., Sujatha D., Ahmed M. I., Prasanth R. R., Subramanian B., Panda S. K., Energy Advances, 2024, 3(2), 442—450 |
35 | Li Y., Lohr P. J., Segapeli A., Baltram J., Werner D., Allred A., Muralidharan K., Printz A. D., ACS Appl. Mater., 2023, 15(20), 24387—24398 |
36 | de Quilettes D. W., Vorpahl S. M., Stranks S. D., Nagaoka H., Eperon G. E., Ziffer M. E., Snaith H. J., Ginger D. S., Science, 2015, 348(6235), 683—686 |
37 | Li J. W., Li B. J., Yang G. J., Zheng D., Yu J. S., Appl. Surf. Sci., 2023, 608, 155269 |
38 | Zhu X., Lin R., Gu H., Hu H. C., Liu Z., Xing G., Wu Y., Ouyang X., Energy Environ. Mater., 2023, 6(5), e12426 |
39 | Sheng W. P., Yang J., Li X., Liu G. L., Lin Z. J., Long J., Xiao S. Q., Tan L. C., Chen Y. W., Energy Environ. Sci., 2021, 14(6), 3532—3541 |
40 | Jiang Y. F., Dong R., Cai X. D., Feng J. S., Liu Z. K., Liu S. Z., Chem. J. Chinese Universities, 2019, 40(8), 1697—1705 |
姜叶芳, 董茹, 蔡雪刁, 冯江山, 刘治科, 刘生忠. 高等学校化学学报, 2019, 40(8), 1697—1705 | |
41 | Sun Q., Duan S. C., Liu G., Meng X. X., Hu D., Deng J. G., Shen B., Kang B. A., Silva S. R. P., Adv. Energy Mater., 2023, 13(36), 2301259 |
42 | Liu K., Liang Q., Qin M. C., Shen D., Yin H., Ren Z. W., Zhang Y. K., Zhang H. K., Fong P. W. K., Wu Z. H., Huang J. M., Hao J. H., Zheng Z. J., So S. K., Lee C. S., Lu X. H., Li G., Joule, 2020, 4(11), 2404—2425 |
43 | Li M. J., Li B., Cao G. Z., Tian J. J., J. Mater. Chem. A, 2017, 5(40), 21313—21319 |
44 | Xu C. Z., Zhang S. C., Fan W. Q., Cheng F. Y., Sun H. C., Kang Z., Zhang Y., Adv. Mater., 2023, 35(7), 2207172 |
45 | Xiao X., Bao C. X., Fang Y. J., Dai J., Ecker B. R., Wang C. C., Lin Y. Z., Tang S., Liu Y., Deng Y. H., Zheng X. P., Gao Y. L., Zeng X. C., Huang J. S., Adv. Mater., 2018, 30(9), 1705176 |
46 | Jacobsson T. J., Correa⁃Baena J. P., Anaraki E. H., Philippe B., Stranks S. D., Bouduban M. E. F., Tress W., Schenk K., Teuscher J., Moser J. E., Rensmo H., Hagfeldt A., J. Phys. Chem. Lett., 2016, 138(32), 10331—10343 |
47 | Chen B., Yang M. J., Priya S., Zhu K., J. Am. Chem. Soc., 2016, 7(5), 905—917 |
48 | He Z., Xu C., Li L. J., Liu A. M., Ma T. L., Gao L. G., Mater. Today Energy, 2022, 26, 101004 |
[1] | LU Chunyu, JING Yuan, WEI Xiaofei, YAO Shiwei, WANG Zhifei, WANG Shubin, DAI Fangna. Advantages and Research Progress of Metal-organic Framework in Supercapacitors [J]. Chem. J. Chinese Universities, 2024, 45(2): 20230450. |
[2] | ZHANG Hongshu, LIANG Pan, XUE Yingying, WEI Yaoyao. Theoretical Study on Hydrogen Storage and Promoter Effect of Binary Clathrate Hydrates [J]. Chem. J. Chinese Universities, 2024, 45(1): 20230383. |
[3] | YANG Yingnan, SUN Qiming. Synthesis of EAB Zeolite and Its Application in Methanol-to-olefin Reaction [J]. Chem. J. Chinese Universities, 2023, 44(8): 20230119. |
[4] | REN Yi, KAN Yuanyuan, SUN Yanna, LI Jianfeng, GAO Ke. Research Progress of Graphdiyne-based Materials in Photovoltaic Applications [J]. Chem. J. Chinese Universities, 2023, 44(7): 20220752. |
[5] | ZHANG Ming, ZHONG Wenkai, QIAN Shiyun, LYU Bosai, ZHOU Guanqing, XUE Xiaonan, ZHOU Zichun, SHI Zhiwen, ZHU Lei, ZHANG Yongming, LIU Feng. Understanding the Mixing Phase Structure in Multi-length-scale Morphology to Arrest High-performance Photovoltaic Devices [J]. Chem. J. Chinese Universities, 2023, 44(7): 20230147. |
[6] | SHI Yu, ZHANG Liu, GUO Xia, WANG Yang, XIAO Haiqin, FANG Jin, ZHOU Yi, ZHANG Maojie. All-small-molecule Organic Solar Cells with Enhanced Efficiency and Stability Enabled by Polymer Additive as a Morphology Modulator [J]. Chem. J. Chinese Universities, 2023, 44(7): 20230047. |
[7] | GAO Fengyu, CHEN Du, LUO Ning, YAO Xiaolong, DUAN Erhong, YI Honghong, ZHAO Shunzheng, TANG Xiaolong. Catalytic Performance and Reaction Mechanism of Chlorobenzene Oxidation over MnO x -CeO2 Catalyst [J]. Chem. J. Chinese Universities, 2023, 44(4): 20220690. |
[8] | BI Ruyi, ZHAO Jilu, WANG Jiangyan, YU Ranbo, WANG Dan. Synthesis and Lithium-ion Battery Performance of Hollow Multishelled CoFe2O4 [J]. Chem. J. Chinese Universities, 2023, 44(1): 20220453. |
[9] | ZHANG Lingling, DONG Huanhuan, HE Xiangxi, LI Li, LI Lin, WU Xingqiao, CHOU Shulei. Progress of Hollow Carbon Materials as Anode for Sodium-ion Battery [J]. Chem. J. Chinese Universities, 2023, 44(1): 20220620. |
[10] | CHU Yuyi, LAN Chang, LUO Ergui, LIU Changpeng, GE Junjie, XING Wei. Single-atom Cerium Sites Designed for Durable Oxygen Reduction Reaction Catalyst with Weak Fenton Effect [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220294. |
[11] | ZHENG Anni, JIN Lei, YANG Jiaqiang, WANG Zhaoyun, LI Weiqing, YANG Fangzu, ZHAN Dongping, TIAN Zhongqun. Effects of 5,5-Dimethylhydantoin on Electroless Copper Plating [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220191. |
[12] | WANG Hongning, HUANG Li, QING Jiang, MA Tengzhou, JIANG Wei, HUANG Weiqiu, CHEN Ruoyu. Activation of Biochar from Cattail and the VOCs Adsorption Application [J]. Chem. J. Chinese Universities, 2022, 43(4): 20210824. |
[13] | LI Weihui, LI Haobo, ZENG Cheng, LIANG Haoyue, CHEN Jiajun, LI Junyong, LI Huiqiao. Hot-pressed PVDF-based Difunctional Protective Layer for Lithium Metal Anodes [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210629. |
[14] | CHANG Sihui, CHEN Tao, ZHAO Liming, QIU Yongjun. Thermal Degradation Mechanism of Bio-based Polybutylactam Plasticized by Ionic Liquids [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220353. |
[15] | YUE Shengli, WU Guangbao, LI Xing, LI Kang, HUANG Gaosheng, TANG Yi, ZHOU Huiqiong. Research Progress of Quasi-two-dimensional Perovskite Solar Cells [J]. Chem. J. Chinese Universities, 2021, 42(6): 1648. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||