Chem. J. Chinese Universities ›› 2023, Vol. 44 ›› Issue (7): 20230047.doi: 10.7503/cjcu20230047
• Article • Previous Articles Next Articles
SHI Yu1, ZHANG Liu1, GUO Xia2(), WANG Yang1, XIAO Haiqin1, FANG Jin1, ZHOU Yi1, ZHANG Maojie1,2(
)
Received:
2023-02-06
Online:
2023-07-10
Published:
2023-04-07
Contact:
GUO Xia
E-mail:guoxia0610@sdu.edu.cn;mjzhang@sdu.edu.cn
Supported by:
CLC Number:
TrendMD:
SHI Yu, ZHANG Liu, GUO Xia, WANG Yang, XIAO Haiqin, FANG Jin, ZHOU Yi, ZHANG Maojie. All-small-molecule Organic Solar Cells with Enhanced Efficiency and Stability Enabled by Polymer Additive as a Morphology Modulator[J]. Chem. J. Chinese Universities, 2023, 44(7): 20230047.
Fig.1 Molecular structures of BTTzR, Y6 and PM7(A), normalized UV⁃Vis⁃NIR absorption spectra of BTTzR, Y6 and PM7 in film states(B), UV⁃Vis⁃NIR absorption coefficients of BTTzR∶Y6 blends with different mass ratios of PM7(C) and energy level diagrams of BTTzR, Y6 and PM7(D)
Fig.2 J⁃V curves(A) and EQE spectra(B) of the BTTzR∶Y6 devices with different mass ratios of PM7, normalized PCE of devices based on BTTzR∶Y6 and BTTzR∶Y6 with 5%(mass fraction) PM7 of storage time at room temperature(C) and annealing time at 85 ℃(D) in a nitrogen glove box
Mass fraction of PM7(%) | VOC/V | JSC/Jcala/(mA·cm-2) | FF(%) | PCE b (%) |
---|---|---|---|---|
0 | 0.88(0.87±0.01) | 23.1/22.6(22.8±0.3) | 68.1(66.8±0.9) | 13.9(13.7±0.2) |
5 | 0.88(0.87±0.01) | 24.4/23.6(23.9±0.3) | 74.4(72.8±1.3) | 16.0(15.7±0.3) |
10 | 0.88(0.87±0.01) | 24.3/23.4(23.8±0.3) | 72.0(70.8±1.2) | 15.4(15.1±0.3) |
15 | 0.87(0.87±0.01) | 24.2/23.3(23.7±0.3) | 69.7(68.8±0.9) | 14.8(14.5±0.3) |
Table 1 Photovoltaic parameters of devices based on BTTzR∶Y6 with different mass ratios of PM7 under the illumination of AM 1.5G, 100 mW/cm2
Mass fraction of PM7(%) | VOC/V | JSC/Jcala/(mA·cm-2) | FF(%) | PCE b (%) |
---|---|---|---|---|
0 | 0.88(0.87±0.01) | 23.1/22.6(22.8±0.3) | 68.1(66.8±0.9) | 13.9(13.7±0.2) |
5 | 0.88(0.87±0.01) | 24.4/23.6(23.9±0.3) | 74.4(72.8±1.3) | 16.0(15.7±0.3) |
10 | 0.88(0.87±0.01) | 24.3/23.4(23.8±0.3) | 72.0(70.8±1.2) | 15.4(15.1±0.3) |
15 | 0.87(0.87±0.01) | 24.2/23.3(23.7±0.3) | 69.7(68.8±0.9) | 14.8(14.5±0.3) |
Fig.3 Hole and electron mobilities(A), transient photocurrent curves(B), transient photovoltage curves(C), photocurrent density(Jph) versus effective voltage(Veff) curves(D), light intensity dependence of JSC(E) and VOC(F) curves of the BTTzR∶Y6 devices with or without PM7
Fig.4 AFM height images(A), TEM images(B) and 2D GIWAXS patterns(C) of BTTzR∶Y6 blend films without(A1—C1) or with PM7(A2—C2), in⁃plane(D) and out⁃of⁃plane(E) Scattering profiles of BTTzR, PM7, Y6 pure films and BTTzR∶Y6, BTTzR∶Y6 with PM7 blend films
Film | γ/(mN·m-1) | χ with BTTzR | χ with Y6 |
---|---|---|---|
BTTzR | 36.24 | — | 2.04κ |
PM7 | 36.72 | 0.02κ | 1.64κ |
Y6 | 41.08 | 2.04κ | — |
BTTzR with PM7 | 37.68 | — | 0.98κ |
Y6 with PM7 | 39.83 | 1.14κ | — |
Table 2 Surface energy(γ) and Flory-Huggins interaction parameter(χ) obtained from water and diiodomethane contact angle measurements of different films
Film | γ/(mN·m-1) | χ with BTTzR | χ with Y6 |
---|---|---|---|
BTTzR | 36.24 | — | 2.04κ |
PM7 | 36.72 | 0.02κ | 1.64κ |
Y6 | 41.08 | 2.04κ | — |
BTTzR with PM7 | 37.68 | — | 0.98κ |
Y6 with PM7 | 39.83 | 1.14κ | — |
1 | Li G., Zhu R., Yang Y., Nat. Photonics, 2012, 6(3), 153—161 |
2 | Kaltenbrunner M., White M. S., Glowacki E. D., Sekitani T., Someya T., Sariciftci N. S., Bauer S., Nat. Commun., 2012, 3(1), 1—7 |
3 | Hou J. H., Inganas O., Friend R. H., Gao F., Nat. Mater., 2018, 17(2), 119—128 |
4 | Zhang J. Q., Tan H. S., Guo X. G., Facchetti A., Yan H., Nat. Energy, 2018, 3(9), 720—731 |
5 | Hedley G. J., Ruseckas A., Samuel I. D., Chem. Rev., 2017, 117(2), 796—837 |
6 | Betancur R., Romero⁃Gomez P., Martinez⁃Otero A., Elias X., Maymó M., Martorell J., Nat. Photonics, 2013, 7(12), 995—1000 |
7 | Collins S. D., Ran N. A., Heiber M. C., Nguyen T., Adv. Energy Mater., 2017, 7(10), 1602242 |
8 | Deng D., Zhang Y. J., Yuan L., He C., Lu K., Wei Z. X., Adv. Energy Mater., 2014, 4(17), 1400538 |
9 | Zhou R. M., Jiang Z. Y. Yang C., Yu J. W., Feng J. R., Adil M. A., Deng D., Zou W. J., Zhang J. Q., Lu K., Ma W., Gao F., Wei Z. X., Nat. Commun., 2019, 10(1), 1—9 |
10 | Kan B., Kan Y. Y., Zuo L. J., Shi X. L., Gao K., InfoMat, 2020, 3(2), 175—200 |
11 | Li Z. Y., Wang X. C., Zheng N., Saparbaev A., Zhang J. Y., Xiao C., Lei S. Y., Zheng X. F., Zhang M. X., Li Y. D., Xiao B., Yang R. Q., Energy Environ. Sci., 2022, 15(10), 4338—4348 |
12 | Qin J. Z., Chen Z. H., Bi P. Q., Yang Y., Zhang J. Q., Huang Z. Y., Wei Z. X., An C. B., Yao H. F., Hao X. T., Zhang T., Cui Y., Hong L., Liu C. Y., Zu Y. F., He C., Hou J. H., Energy Environ. Sci., 2021, 14(11), 5903—5910 |
13 | Nian L., Kan Y. Y., Gao K., Zhang M., Li N., Zhou G. Q., Jo S. B., Shi X. L., Lin F., Rong Q., Liu F., Zhou G. F., Jen A. K. Y., Joule, 2020, 4(10), 2223—2236 |
14 | Jiang M. Y., Bai H. R., Zhi H. F., Yan L., Woo H. Y., Tong L. J., Wang J. L., Zhang F. J., An Q. S., Energy Environ. Sci., 2021, 14(7), 3945—3953 |
15 | Ge J. F., Hong L., Ma H. Y., Ye Q. R., Chen Y. W., Xie L., Song W., Li D. D., Chen Z. Y., Yu K. B., Zhang J. Q., Wei Z. X., Huang F., Ge Z. Y., Adv. Mater., 2022, 34(29), 2202752 |
16 | Zhang L. L., Zhu X. W., Deng D., Wang Z., Zhang Z. Q., Li Y., Zhang J. Q., Lv K., Liu L. X., Zhang X. N., Zhou H. Q., Ade H., Wei Z. X., Adv. Mater., 2022, 34(5), 2106316 |
17 | Zhang L. L., Sun R., Zhang Z. Q., Zhang J. Q., Zhu Q. L., Ma W., Min J., Wei Z. X., Deng D., Adv. Mater., 2022, 34(50), 2207020 |
18 | Chong K. E., Xu X. P., Meng H. F., Xue J. W., Yu L. Y., Ma W., Peng Q., Adv. Mater., 2022, 34(13), 2109516 |
19 | Cui Y., Xu Y., Yao H. F., Bi P. Q., Hong L., Zhang J. Q., Zu Y. F., Zhang T., Qin J. Z., Ren J. Z., Chen Z. H., He C., Hao X. T., Wei Z. X., Hou J. H., Adv. Mater., 2021, 33(41), 2102420 |
20 | Gao W., Qi F., Peng Z. X., Lin F. R., Jiang K., Zhong C., Kaminsky W., Guan Z., Lee C. S., Marks T. J., Ade H., Jen A. K., Adv. Mater., 2022, 34(32), 2202089 |
21 | Sun R., Wu Y., Yang X. R., Gao Y., Chen Z., Li K., Qiao J. W., Wang T., Guo J., Liu C., Hao X. T., Zhu H. M., Min J., Adv. Mater., 2022, 34(26), 2110147 |
22 | Wei Y. N., Chen Z. H., Lu G. Y., Yu N., Li C. Q., Gao J. H., Gu X. B., Hao X. T., Lu G. H., Tang Z., Zhang J. Q., Wei Z. X., Zhang X., Huang H., Adv. Mater., 2022, 34(33), 2204718 |
23 | Zhu L., Zhang M., Xu J. Q., Li C., Yan J., Zhou G. Q., Zhong W. K., Hao T. Y., Song J. L., Xue X. N., Zhou Z. C., Zeng R., Zhu H. M., Chen C. C., MacKenzie R. C. I., Zou Y. C., Nelson J., Zhang Y. M., Sun Y. M., Liu F., Nat. Mater., 2022, 21(6), 656—663 |
24 | Yang L. Y., Zhang S. Q., He C., Zhang J. Q., Yao H. F., Yang Y., Zhang Y., Zhao W. C., Hou J. H., J. Am. Chem. Soc., 2017, 139(5), 1958—1966 |
25 | Deng D., Zhang Y. J., Zhang J. Q., Wang Z. Y., Zhu L. Y., Fang J., Xia B. Z., Wang Z., Lu K., Ma W., Wei Z. X., Nat. Commun., 2016, 7(1), 13740—13749 |
26 | Min J., Jiao X. C., Sgobba V., Kan B., Heumüller T., Rechberger S., Spiecker E., Guldi D. M., Wan X. J., Chen Y. S., Ade H., Brabec C. J., Nano Energy, 2016, 28, 241—249 |
27 | Kan B., Li M. M., Zhang Q., Liu F., Wan X. J., Wang Y. C., Ni W., Long G. K., Yang X., Feng H. R., Zuo Y., Zhang M. T., Huang F., Cao Y., Russell T. P., Chen Y. S., J. Am. Chem. Soc., 2015, 137(11), 3886—3893 |
28 | Ge J. F., Hong L., Song W., Xie L., Zhang J. S., Chen Z. Y., Yu K. B., Peng R. X., Zhang X. L., Ge Z. Y., Adv. Energy Mater., 2021, 11(22), 2100800 |
29 | Chen H. Y., Hu D. Q., Yang Q. G., Gao J., Fu J. H., Yang K., He H., Chen S. S., Kan Z. P., Duan T. N., Yang C. D., Ouyang J. Y., Xiao Z. Y., Sun K., Lu S. R., Joule, 2019, 3(12), 3034—3047 |
30 | Yue Q. H., Wu H., Zhou Z. C., Zhang M., Liu F., Zhu X. Z., Adv. Mater., 2019, 31(51), 1904283 |
31 | Zhang Z. Q., Deng D., Li Y., Ding J. W., Wu Q., Zhang L. L., Zhang G. J., Iqbal M. J., Wang R., Zhang J. Q., Qiu X. H., Wei Z. X., Adv. Energy Mater., 2021, 12(3), 2102394 |
32 | Liang H. Y., Wang Y., Guo X., Yang D., Xia X. X., Wang J. Q., Zhang L., Shi Y., Lu X. H., Zhang M. J., J. Mater. Chem. A, 2022, 10(20), 10926—10934 |
33 | Yue Q. H., Wu H., Zhou Z. C., Zhang M., Liu F., Zhu X. Z., Adv. Mater., 2019, 31(51), 1904283 |
34 | Wang X. C., Huang D., Han J. H., Hu L. W., Xiao C., Li Z. Y.,Yang R. Q., ACS Appl. Mater. Interfaces, 2021, 13(9), 11108—11116 |
35 | Qin Z. J., An C. B., Zhang J. Q., Ma K. Q., Yang Y., Zhang T., Li S. S., Xian K. H., Cui Y., Tang Y. B., Ma W., Yao H. F., Zhang S. Q., Xu B. W., He C., Hou J. H., Sci. China Mater., 2020, 63(7), 1142—1150 |
36 | Ye Q. R., Ge J. F., Li D. D., Chen Z. Y., Shi J. Y., Zhang X. L., Zhou E. J., Yang D. B., Ge Z. Y., ACS Appl. Mater. Interfaces, 2022, 14(29), 33234—33241 |
37 | Sun R., Wu Y., Guo J., Wang Y. C., Qin F., Shen B. X., Li D. H., Wang T., Zhou Y. H., Lu G. H., Li Y. F., Min J., Energy Environ. Sci., 2021, 14(5), 3174—3183 |
38 | Ma R. J., Liu T., Luo Z. H., Guo Q., Xiao Y. Q., Chen Y. Z., Li X. J., Luo S. W., Lu X. H., Zhang M. J., Li Y. F., Yan H., Sci. China Chem., 2020, 63(3), 325—330 |
39 | Wang Y. L., Wang Y., Zhu L., Liu H. Q., Fang J., Guo X., Liu F., Tang Z., Zhang M. J., Li Y. F., Energy Environ. Sci., 2020, 13(5), 1309—1317 |
40 | Yuan J., Zhang Y. Q., Zhou L. Y., Zhang G. C., Yip H. L., Lau T. K., Lu X. H., Zhu C., Peng H. J., Johnson P. A., Leclerc M., Cao Y., Ulanski J., Li Y. F., Zou Y. P., Joule, 2019, 3(4), 1140—1151 |
41 | Fan Q. P., An Q. S., Lin Y. B., Xia Y. X., Li Q., Zhang M., Su W. Y., Peng W. H., Zhang C. F., Liu F., Hou L. T., Zhu W. G., Yu D. H., Xiao M., Moons E., Zhang F. J., Anthopoulos T. D., Inganäs O., Wang E. G., Energy Environ. Sci., 2020, 13(12), 5017—5027 |
42 | Fan Q. P., Su W. Y., Wang Y., Guo B., Jiang Y. F., Guo X., Liu F., Russell T. P., Zhang M. J., Li Y. F., Sci. China Chem., 2018, 61(5), 531—537 |
43 | Guo X., Zhang M. J., Tan J. H., Zhang S. Q., Huo L. J., Hu W. P., Li Y. F., Hou J. H., Adv. Mater., 2012, 24(48), 6536—6541 |
44 | Lin J., Guo Q., Liu Q., Lv J. F., Liang H. Y., Wang Y., Zhu L., Liu F., Guo X., Zhang M. J., Chin. J. Chem., 2021, 39(10), 2685—2691 |
45 | Pan F., Sun C. K., Li Y. F., Tang D. Y., Zou Y. P., Li X. J., Bai S., Wei X., Lv M. L., Chen X. W., Li Y. F., Energy Environ. Sci., 2019, 12(11), 3400—3411 |
46 | Shuttle C. G., O’Regan B., Ballantyne A. M., Nelson J., Bradley D. D. C., de Mello J., Durrant J. R., Appl. Phys. Lett., 2008, 92(9), 093311 |
47 | Kirchartz T., Agostinelli T., Campoy⁃Quiles M., Gong W., Nelson J., J. Phys. Chem. Lett., 2012, 3(23), 3470—3475 |
48 | Kirchartz T., Bisquert J., Mora⁃Sero I., Garcia⁃Belmonte G., Phys. Chem. Chem. Phys., 2015, 17(6), 4007—4014 |
49 | Lu L. Y., Xu T., Chen W., Lee J. M., Luo Z. Q., Jung I. H., Park H. I., Kim S. O., Yu L. P., Nano Lett., 2013, 13(6), 2365—2369 |
50 | Guo B., Li W. B., Guo X., Meng X. Y., Ma W., Zhang M. J., Li Y. F., Adv. Mater., 2017, 29(36), 1702291 |
51 | Schilinsky P., Waldauf C., Brabec C. J., Appl. Phys. Lett., 2002, 81(20), 3885—3887 |
52 | Koster L. J. A., Mihailetchi V. D., Ramaker R., Blom P. W. M., Appl. Phys. Lett., 2005, 86(12), 123509 |
53 | Liu Q., Fang J., Wu J. N., Zhu L., Guo X., Liu F., Zhang M. J., Chin. J. Chem., 2021, 39(7), 1941—1947 |
54 | Song W., Yu K. B., Ge J. F., Xie L., Zhou R., Peng R. X., Zhang X. L., Yang M. J., Wei Z. X., Ge Z. Y., Matter, 2022, 5(6), 1877—1889 |
55 | Pang S. T., Zhang R. W., Duan C. H., Zhang S., Gu X. D., Liu X., Huang F., Cao Y., Adv. Energy Mater., 2019, 9(30), 1901740 |
56 | Wang Y., Fan Q. P., Wang Y. L., Fang J., Liu Q., Zhu L., Qiu J. J., Guo X., Liu F., Su W. Y., Zhang M. J., Chin. J. Chem., 2021, 39(8), 2147—2153 |
57 | Wu H., Fan H. J., Xu S. J., Ye L., Guo Y., Yi Y. P., Ade H., Zhu X. Z., Small, 2019, 15(1), 1804271 |
58 | Kouijzer S., Michels J. J., van den Berg M., Gevaerts V. S., Turbiez M., Wienk M. M., Janssen R. A. J., J. Am. Chem. Soc., 2013, 135(32), 12057—12067 |
59 | Sun R., Deng D., Guo J., Wu Q., Guo J., Shi M. M., Shi K., Wang T., Xue L. J., Wei Z. X., Min J., Energy Environ. Sci., 2019, 12(8), 2518—2528 |
60 | Zhang M. J., Guo X., Ma W., Ade H., Hou J. H., Adv. Mater., 2015, 27(31), 4655—4660 |
61 | Wu J. N., Li G. W., Fang J., Guo X., Zhu L., Guo B., Wang Y. L., Zhang G. Y., Arunagiri L., Liu F., Yan H., Zhang M. J., Li Y. F., Nat. Commun., 2020, 11(1), 4612—4620 |
62 | Guo X., Fan Q. P., Wu J. N., Li G. W., Peng Z. X., Su W. Y., Lin J., Hou L. T., Qin Y. P., Ade H., Ye L., Zhang M. J., Li Y. F., Angew. Chem. Int. Ed., 2021, 60(5), 2322—2329 |
[1] | SHI Shiling, JIANG Hanxi, TU Xueyang, XIAN Kaihu, HAN Dexia, LI Yanru, YAO Xiang, YE Long, FEI Zhuping. Synthesis and Photovoltaic Properties of Non-Fullerene Acceptors Based on Aryl-Substituted Imide End Groups [J]. Chem. J. Chinese Universities, 0, (): 20230182. |
[2] | ZHANG Youhui, YANG Na, DUAN Na, CHENG Yujun, YOU Shiyong, WU Feiyan, CHEN Lie. End-capped Polymer Donors for Highly-efficient Organic Solar Cells [J]. Chem. J. Chinese Universities, 2023, 44(7): 20230169. |
[3] | ZHANG Yi, SHAN Tong, WANG Yan, ZHONG Hongliang. Non-fullerene Acceptors with Germanium as Bridge Atom and Their Applications in Organic Solar Cells [J]. Chem. J. Chinese Universities, 2023, 44(7): 20230050. |
[4] | LI Hao, YANG Chenyi, LI Jiayao, ZHANG Shaoqing, HOU Jianhui. Efficient Organic Solar Cells based on Acceptor1-Acceptor2 type Polymer Donor [J]. Chem. J. Chinese Universities, 0, (): 20230157. |
[5] | WANG Jiacheng, CAI Guilong Cai, ZHANG Yajing, WANG Jiayu, LU Xinhui, ZHAN Xiaowei, CHEN Xinggu. Simple Modulation of Side-chains for Near-Infrared Absorbing Non-Fullerene Acceptors to Enable Higher Short-Circuit Current Density [J]. Chem. J. Chinese Universities, 0, (): 20230163. |
[6] | GUO Ziqi, JIAO Cancan, WU Simin, MENG Lingxian, SUN Yanna, KE Xin, WAN Xiangjian, CHEN Yongsheng. The Effect of Substitution Positions of Alkyl Chains in Small Molecular Donor Bridged Units on the Performance of Photovoltaic Devices [J]. Chem. J. Chinese Universities, 0, (): 20230180. |
[7] | LI Wei, CHEN Chen, LIU Dan, WANG Tao. Hierarchical Aggregates of Non-fullerene Electron Acceptors [J]. Chem. J. Chinese Universities, 0, (): 20230160. |
[8] | SONG Yanan, YOU Zuhao, Wang Xu, LIU Yao. Research Progress of Electroactive Ionene-based Organic Photovoltaic Interlayers [J]. Chem. J. Chinese Universities, 0, (): 20230167. |
[9] | WU Jifa, WU Hanping, YUAN Lin, PENG Xiaobin. Enhancing the Performances of Porphyrin-based All-small-molecule Ternary Organic Solar Cells via Synergizing Fullerene and Non-fullerene Acceptors [J]. Chem. J. Chinese Universities, 0, (): 20230136. |
[10] | YANG Lijun, YU Yang, ZHANG Lei. Construction of Dual-functional 2D/3D Hydrid Co2P-CeO x Heterostructure Integrated Electrode for Electrocatalytic Urea Oxidation Assisted Hydrogen Production [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220082. |
[11] | ZHANG Yichao, ZHAO Fulai, WANG Yu, WANG Yaling, SHEN Yongtao, FENG Yiyu, FENG Wei. Experimental Optimization and Theoretical Simulation of High Performance Field-effect Transistors Based on Multilayer Tungsten Diselenide [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220113. |
[12] | WANG Jianqiao, MA Yuguang. Extent and Changeable Rule of HOMO and LUMO Energy of Organic Semiconductors in Nonequilibrium States and a Phenomenological Understanding for the Formation of “Hot Excitons” in OLED [J]. Chem. J. Chinese Universities, 2022, 43(4): 20210856. |
[13] | TANG Ding, ZHONG Shuiping. Preparation and Photoelectrochemical Performance of Bi1-xFexVO4 Thin Film Photoanodes [J]. Chem. J. Chinese Universities, 2021, 42(8): 2509. |
[14] | LIANG Xuejing, ZHAO Fulai, WANG Yu, ZHANG Yichao, WANG Yaling, FENG Yiyu, FENG Wei. Preparation and Photoelectric Properties of Germanium Sulphoselenide Photodetector [J]. Chem. J. Chinese Universities, 2021, 42(8): 2661. |
[15] | HU Wei, LIU Xiaofeng, LI Zhenyu, YANG Jinlong. Surface and Size Effects of Nitrogen-vacancy Centers in Diamond Nanowires [J]. Chem. J. Chinese Universities, 2021, 42(7): 2178. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||