Chem. J. Chinese Universities ›› 2024, Vol. 45 ›› Issue (2): 20230450.doi: 10.7503/cjcu20230450
• Review • Previous Articles
LU Chunyu, JING Yuan, WEI Xiaofei, YAO Shiwei, WANG Zhifei, WANG Shubin, DAI Fangna()
Received:
2023-10-25
Online:
2024-02-10
Published:
2023-12-21
Contact:
DAI Fangna
E-mail:fndai@upc.edu.cn
Supported by:
CLC Number:
TrendMD:
LU Chunyu, JING Yuan, WEI Xiaofei, YAO Shiwei, WANG Zhifei, WANG Shubin, DAI Fangna. Advantages and Research Progress of Metal-organic Framework in Supercapacitors[J]. Chem. J. Chinese Universities, 2024, 45(2): 20230450.
Conductive mechanism | MOF | Ligand | Method | σ/(S·cm-1) | Ref. |
---|---|---|---|---|---|
Through⁃space | Zn2(TTFTB) | ![]() | TRTS | 5.0×10-4 | [ |
Co2(TTFTB) | 2⁃Probe sc | 1.5×10-5 | |||
Mn2(TTFTB) | 2⁃Probe sc | 9×10-5 | |||
Cd2(TTFTB) | 2⁃Probe sc | 2.9×10-4 | |||
La4(TTFTB)4 | 2⁃Probe pellet | 2.5×10-6 | [ | ||
Mn(dca)2[TTF(py)4]0.5 | ![]() | 2⁃Probe pellet | 6.3×10-9 | [ | |
Mn(N3)[TTF(py)4](ClO4) | 2⁃Probe pellet | 1.5×10-9 | |||
MnCl2[TTF(py)4] | 2⁃Probe pellet | 2×10-10 | |||
La1+x (HOTP) | 2⁃Probe pellet | 8.2×10-4 | [ | ||
Nd1+x (HOTP) | 2⁃Probe pellet | 8.0×10-4 | |||
Ho1+x (HOTP) | 2⁃Probe pellet | 0.053 | |||
Yb1+x (HOTP) | 2⁃Probe pellet | 0.010 | |||
Cu3(HOTP)2 | 4⁃Probe film | 0.29 | [ | ||
Cu3(HOTP)(THQ) | 2⁃Probe pellet | 0.3 | [ | ||
Through⁃bond | Cu[Cu(pdt)2] | M=Cu, Ni | — | 6×10-4 | [ |
Cu[Ni(pdt)2] | 2⁃Probe pellet | 2.6×10-3 | [ | ||
Cu3(BTC)2 | ![]() | 2⁃Probe pellet | 8.3×10-8— 5.3×10-11 | [ | |
Co2(AnBHB) | ![]() | vdP pellet | 4×10-8 | [ | |
Mg2(AnBHB) | vdP pellet | 5×10-9 | |||
Mn2(AnBHB) | vdP pellet | 3×10-8 | |||
Ni2(AnBHB) | vdP pellet | 4×10-7 | |||
Zn2(AnBHB) | vdP pellet | 6×10-8 |
Table 1 Summary of some conductive MOF in recent years
Conductive mechanism | MOF | Ligand | Method | σ/(S·cm-1) | Ref. |
---|---|---|---|---|---|
Through⁃space | Zn2(TTFTB) | ![]() | TRTS | 5.0×10-4 | [ |
Co2(TTFTB) | 2⁃Probe sc | 1.5×10-5 | |||
Mn2(TTFTB) | 2⁃Probe sc | 9×10-5 | |||
Cd2(TTFTB) | 2⁃Probe sc | 2.9×10-4 | |||
La4(TTFTB)4 | 2⁃Probe pellet | 2.5×10-6 | [ | ||
Mn(dca)2[TTF(py)4]0.5 | ![]() | 2⁃Probe pellet | 6.3×10-9 | [ | |
Mn(N3)[TTF(py)4](ClO4) | 2⁃Probe pellet | 1.5×10-9 | |||
MnCl2[TTF(py)4] | 2⁃Probe pellet | 2×10-10 | |||
La1+x (HOTP) | 2⁃Probe pellet | 8.2×10-4 | [ | ||
Nd1+x (HOTP) | 2⁃Probe pellet | 8.0×10-4 | |||
Ho1+x (HOTP) | 2⁃Probe pellet | 0.053 | |||
Yb1+x (HOTP) | 2⁃Probe pellet | 0.010 | |||
Cu3(HOTP)2 | 4⁃Probe film | 0.29 | [ | ||
Cu3(HOTP)(THQ) | 2⁃Probe pellet | 0.3 | [ | ||
Through⁃bond | Cu[Cu(pdt)2] | M=Cu, Ni | — | 6×10-4 | [ |
Cu[Ni(pdt)2] | 2⁃Probe pellet | 2.6×10-3 | [ | ||
Cu3(BTC)2 | ![]() | 2⁃Probe pellet | 8.3×10-8— 5.3×10-11 | [ | |
Co2(AnBHB) | ![]() | vdP pellet | 4×10-8 | [ | |
Mg2(AnBHB) | vdP pellet | 5×10-9 | |||
Mn2(AnBHB) | vdP pellet | 3×10-8 | |||
Ni2(AnBHB) | vdP pellet | 4×10-7 | |||
Zn2(AnBHB) | vdP pellet | 6×10-8 |
1 | Samireddi S., Aishwarya V., Shown I., Muthusamy S., Unni S. M., Wong K. T., Chen K. H., Chen L. C., Small, 2021, 17(46), 2103823 |
2 | Xu C. R., Pet. Technol., 2022, 188—190 |
许拯瑞. 石化技术, 2022, 188—190 | |
3 | Pan Y., Zhao Y. X., Mu S. J., Wang Y., Jiang C. M., Liu Q. Z., Fang Q. R., Xue M., Qiu S. L., J. Mater. Chem. A, 2017, 5(20), 9544—9552 |
4 | Mehtab T., Yasin G., Arif M., Shakeel M., Korai R. M., Nadeem M., Muhammad N., Lu X., J. Energy Storage, 2019, 21, 632—646 |
5 | Amali A. J., Sun J. K., Xu Q., Chem. Commun., 2014, 50(13), 1519—1522 |
6 | Alaş M. Ö., Güngör A., Genç R., Erdem E., Nanoscale, 2019, 11(27), 12804—12816 |
7 | Jayaramulu K., Dubal D. P., Nagar B., Ranc V., Tomanec O., Petr M., Datta K. K. R., Zboril R., Gómez‐Romero P., Fischer R. A., Adv. Mater., 2018, 30(15), 1705789 |
8 | Sheberla D., Bachman J. C., Elias J. S., Sun C. J., Shao⁃Horn Y., Dincă M., Nat. Mater., 2017, 16(2), 220—224 |
9 | Cheng J. Y., Chen S. M., Chen D., Dong L. B., Wang J. J., Zhang T. L., Jiao T. P., Liu B., Wang H., Kai J. J., J. Mater. Chem. A, 2018, 6(41), 20254—20266 |
10 | Furukawa H., Cordova K. E., O’keeffe M., Yaghi O. M., Science, 2013, 341(6149), 1230444 |
11 | Dai F. N., Wang X. K., Wang Y. T., Liu Z. N., Sun D. F., Angew. Chem. Int. Ed., 2020, 59(50), 22372—22377 |
12 | Fan W. D., Wang X., Zhang X. R., Liu X. P., Wang Y. T., Kang Z. X., Dai F. N., Xu B., Wang R. M., Sun D. F., ACS Cent. Sci., 2019, 5(7), 1261—1268 |
13 | Zhang X., Chen Z., Liu X., Hanna S. L., Wang X., Taheri⁃Ledari R., Maleki A., Li P., Farha O. K., Chem. Soc. Rev., 2020, 49(20), 7406—7427 |
14 | Rosi N. L., Eckert J., Eddaoudi M., Vodak D. T., Kim J., O’keeffe M., Yaghi O. M., Science, 2003, 300(5622), 1127—1129 |
15 | Shao K., Wen H. M., Liang C. C., Xiao X. Y., Gu X. W., Chen B. L., Qian G. D., Li B., Angew. Chem. Int. Ed., 2022, 61(41), e202211523 |
16 | Jiang C. H., Hao C. L., Wang X. K., Liu H. Y., Wei X. F., Xu H. K., Wang Z. F., Ouyang Y. G., Guo W. Y., Dai F. N., Chem. Eng. J., 2023, 453, 139713 |
17 | Xu H. K., Wei X. F., Zeng H., Jiang C. H., Wang Z. F., Ouyang Y. G., Lu C. Y., Jing Y., Yao S. W., Dai F. N., Nano Research, 2023, 16, 8614—8637 |
18 | Huang Z. D., Xu B., Li Z. G., Ren J. W., Mei H., Liu Z. N., Xie D. G., Zhang H. B., Dai F. N., Wang R. M., Small, 2020, 16(44), 2004231 |
19 | Zhou Z., Mukherjee S., Hou S., Li W., Elsner M., Fischer R. A., Angew. Chem. Int. Ed., 2021, 60(37), 20551—20557 |
20 | He Y. Z., Hou X. F., Guo J. W., He Z. H., Guo T., Liu Y., Zhang Y. T., Zhang J. W., Feng N. P., Carbohydr. Polym., 2020, 235, 115935 |
21 | Han Z., Zhang R., Jiang J., Chen Z., Ni Y., Xie W., Xu J., Zhou Z., Chen J., Cheng P., J. Am. Chem. Soc., 2023, 145(18), 10149—10158 |
22 | Liu J., Jiang J., Zhou Q., Chen Z., Zhang R., Xu X., Han X., Yang S., Zhou Z., Cheng P., eScience, 2023, 3(2), 100094 |
23 | Sundriyal S., Kaur H., Bhardwaj S. K., Mishra S., Kim K. H., Deep A., Coord. Chem. Rev., 2018, 369, 15—38 |
24 | Wang L., Han Y., Feng X., Zhou J., Qi P., Wang B., Coord. Chem. Rev., 2016, 307, 361—381 |
25 | Chen L. F., Xu Q., Science, 2017, 358(6361), 304—305 |
26 | Ren C., Jia X., Zhang W., Hou D., Xia Z., Huang D., Hu J., Chen S., Gao S., Adv. Funct. Mater., 2020, 30(45), 2004519 |
27 | Zheng S. S., Li Q., Xue H. G., Pang H., Xu Q., Natl. Sci. Rev., 2020, 7(2), 305—314 |
28 | Ajdari F. B., Kowsari E., Shahrak M. N., Ehsani A., Kiaei Z., Torkzaban H., Ershadi M., Eshkalak S. K., Haddadi⁃Asl V., Chinnappan A., Coord. Chem. Rev., 2020, 422, 213441 |
29 | Xie L. S., Park S. S., Chmielewski M. J., Liu H., Kharod R. A., Yang L., Campbell M. G., Dincă M., Angew. Chem. Int. Ed., 2020, 59(44), 19623—19626 |
30 | Hmadeh M., Lu Z., Liu Z., GáNdara F., Furukawa H., Wan S., Augustyn V., Chang R., Liao L., Zhou F., Perre E., Ozolins V., Suenaga K., Duan X. F., Dunn B., Yamamto Y., Terasaki O., Yaghi O. M., Chem. Mater., 2012, 24(18), 3511—3513 |
31 | Wang F. X., Liu Z. C., Yang C. Q., Zhong H. X., Nam G., Zhang P. P., Dong R. H., Wu Y. P., Cho J., Zhang J., Feng X. L., Adv. Mater., 2020, 32(4), 1905361 |
32 | Xu X. T., Tang J., Qian H. Y., Hou S. J., Bando Y., Hossain M. S. A., Pan L., Yamauchi Y., ACS Appl. Mater. Interfaces, 2017, 9(44), 38737—38744 |
33 | Krishnan S., Gupta A. K., Singh M. K., Guha N., Rai D. K., Chem. Eng. J., 2022, 435, 135042 |
34 | Liu Y. X., Wei Y. N., Liu M. H., Bai Y. C., Wang X. Y., Shang S. C., Du C. S., Gao W. Q., Chen J. Y., Liu Y. Q., Adv. Mater., 2021, 33(13), 2007741 |
35 | Jiao Y., Pei J., Chen D. H., Yan C. S., Hu Y. Y., Zhang Q., Chen G., J. Mater. Chem. A, 2017, 5(3), 1094—1102 |
36 | Zhang Y. D., Shao R., Xu W., Ding J. F., Wang Y., Yan X. H., Shi W. Y., Wang M., Chem. Eng. J., 2021, 419, 129576 |
37 | Zhu B. J., Wen D. S., Liang Z. B., Zou R. Q., Coord. Chem. Rev., 2021, 446, 214119 |
38 | Xie L. S., Sun L., Wan R., Park S. S., Degayner J. A., Hendon C. H., Dincă M., J. Am. Chem. Soc., 2018, 140(24), 7411—7414 |
39 | Zhang P. P., Wang M. C., Liu Y. N., Yang S., Wang F. X., Li Y., Chen G. B., Li Z. C., Wang G., Zhu M. S., Dong R. H., Yu M. H., Schmidt O. G., Feng X. L., J. Am. Chem. Soc., 2021, 143(27), 10168—10176 |
40 | Tang L. P., Study on Electronic Structure and Physical Properties of Monolayer Metal⁃BHT based on π⁃d Conjugate Conduction, Hunan University, Changsha, 2019 |
唐粱坡. 基于π⁃d共轭导电的单层金属-BHT电子结构及其物性研究, 长沙: 湖南大学, 2019 | |
41 | Dong H. L., Fu X. L., Liu J., Wang Z. R., Hu W. P., Adv. Mater., 2013, 25(43), 6158—6183 |
42 | Sun L., Campbell M. G., Dincă M., Angew. Chem. Int. Ed., 2016, 55(11), 3566—3579 |
43 | Takaishi S., Hosoda M., Kajiwara T., Miyasaka H., Yamashita M., Nakanishi Y., Kitagawa Y., Yamaguchi K., Kobayashi A., Kitagawa H., Inorg. Chem., 2009, 48(19), 9048—9050 |
44 | Martín N., Chem. Commun., 2013, 49(63), 7025—7027 |
45 | Kambe T., Sakamoto R., Hoshiko K., Takada K., Miyachi M., Ryu J. H., Sasaki S., Kim J., Nakazato K., Takata M., Nishihara H., J. Am. Chem. Soc., 2013, 135(7), 2462—2465 |
46 | Talin A. A., Centrone A., Ford A. C., Foster M. E., Stavila V., Haney P., Kinney R. A., Szalai V., El Gabaly F., Yoon H. P., Léonard F., Allendorf M. D., Science, 2014, 343(6166), 66—69 |
47 | Darago L. E., Aubrey M. L., Yu C. J., Gonzalez M. I., Long J. R., J. Am. Chem. Soc., 2015, 137(50), 15703—15711 |
48 | Dong H. H., Gao H. G., Geng J. R., Hou X. S., Gao S. N., Wang S. W., Chou S. L., J. Phys. Chem. C, 2021, 125(38), 20814—20820 |
49 | Narayan T. C., Miyakai T., Seki S., Dincă M., J. Am. Chem. Soc., 2012, 134(31), 12932—12935 |
50 | Castells‐Gil J., Mañas‐Valero S., Vitórica‐Yrezábal I. J., Ananias D., Rocha J., Santiago R., Bromley S. T., Baldoví J. J., Coronado E., Souto M., Chem. Eur. J., 2019, 25(54), 12636—12643 |
51 | Yu Q., Su J., Ma J. P., Leong C. F., D’alessandro D. M., Wang H. Y., Kurmoo M., Zuo J. L., Cryst. Growth Des., 2019, 19(5), 3012—3018 |
52 | Skorupskii G., Trump B. A., Kasel T. W., Brown C. M., Hendon C. H., Dincă M., Nat. Chem., 2020, 12(2), 131—136 |
53 | Song X. Y., Wang X. Y., Li Y. S., Zheng C. Z., Zhang B. W., Di C. A., Li F., Jin C., Mi W. B., Chen L., Angew. Chem. Int. Ed., 2020, 59(3), 1118—1123 |
54 | Yao M. S., Zheng J. J., Wu A. Q., Xu G., Nagarkar S. S., Zhang G., Tsujimoto M., Sakaki S., Horike S., Otake K., Kitagawa S., Angew. Chem. Int. Ed., 2020, 59(1), 172—176 |
55 | Roberts M. N., Nagle J. K., Finden J. G., Branda N. R., Wolf M. O., Inorg. Chem., 2009, 48(1), 19—21 |
56 | Kobayashi Y., Jacobs B., Allendorf M. D., Long J. R., Chem. Mater., 2010, 22(14), 4120—4122 |
57 | Luna⁃Triguero A., Vicent⁃Luna J., Gómez⁃Álvarez P., Calero S., J. Phys. Chem. C, 2017, 121(5), 3126—3132 |
58 | Scheurle P. I., Mähringer A., Jakowetz A. C., Hosseini P., Richter A. F., Wittstock G., Medina D. D., Bein T., Nanoscale, 2019, 11(43), 20949—20955 |
59 | Howarth A. J., Liu Y., Li P., Li Z., Wang T. C., Hupp J. T., Farha O. K., Nat. Rev. Mater., 2016, 1(3), 15018 |
60 | Yuan S., Feng L., Wang K. C., Pang J. D., Bosch M., Lollar C., Sun Y. J., Qin J. S., Yang X. Y., Zhang P., Adv. Mater., 2018, 30(37), 1704303 |
61 | Nguyen D., Schepisi I., Amir F., Chem. Eng. J., 2019, 378, 122150 |
62 | Yue L. G., Chen L., Wang X. Y., Lu D. Z., Zhou W. L., Shen D. J., Yang Q., Xiao S. F., Li Y. Y., Chem. Eng. J., 2023, 451, 138687 |
63 | Zheng L. X., Song J. L., Ye X. Y., Wang Y. Z., Shi X. W., Zheng H. J., Nanoscale, 2020, 12(25), 13811—13821 |
64 | Yan W., Su J., Yang Z. M., Lv S., Jin Z., Zuo J. L., Small, 2021, 17(22), 2005209 |
65 | Nagaraju G., Sekhar S. C., Ramulu B., Hussain S., Narsimulu D., Yu J. S., Nanomicro. Lett., 2021, 13, 17 |
66 | Wang L. J., Saji S. E., Wu L. J., Wang Z. X., Chen Z. J., Du Y. P., Yu X. F., Zhao H. T., Yin Z. Y., Small, 2022, 18(33), 2201642 |
67 | Sennu P., Aravindan V., Lee Y. S., J. Power Sources, 2016, 306, 248—257 |
68 | Wang J. L., Liang J., Lin Y. C., Shao K. J., Chang X., Qian L. J., Li Z., Hu P. Z., Chem. Eng. J., 2022, 446, 137368 |
69 | Zhou J. J., Ji W. X., Xu L., Yang Y., Wang W. Q., Ding H. L., Xu X. C., Wang W. W., Zhang P. L., Hua Z. L., Chen L. Y., Chem. Eng. J., 2022, 428, 132123 |
70 | Wang J. M., Huang Y., Han X. P., Zhang S., Wang M. Y., Yan J., Chen C., Zong M., J. Colloid Interface Sci., 2021, 603, 440—449 |
71 | Kazemi S. H., Hosseinzadeh B., Kazemi H., Kiani M. A., Hajati S., ACS Appl. Mater. Interfaces, 2018, 10(27), 23063—23073 |
72 | Zhang Y. D., Ding J. F., Xu W., Wang M., Shao R., Sun Y., Lin B. P., Chem. Eng. J., 2020, 386, 124030 |
73 | Liu N. N., Liu X. G., Pan J. Q., J. Colloid Interface Sci., 2022, 606, 1364—1373 |
74 | Zhang Z. J., Liu M. D., Li C., Wenzel W., Heinke L., Small, 2022, 18(39), 2200602 |
[1] | CHEN Xiaoping, WANG Xutan, LIU Ning, WANG Qingxiang, NI Jiancong, YANG Weiqiang, LIN Zhenyu. MOFs-based Microfluidic Chips for Real-time Online Determination of Multiple Heavy Metal Ions [J]. Chem. J. Chinese Universities, 2024, 45(2): 25. |
[2] | JI Chao, LI Wen, ZHANG Lirong, HUA Jia, LIU Yunling. Construction of a Eu-MOF Material with Fe3+ and Nitro-aromatic Explosives Fluorescence Detection Performance [J]. Chem. J. Chinese Universities, 2024, 45(2): 16. |
[3] | TANG Haiyan, ZI Limeng, ZHANG Bing, FU Yu. Preparation and Application of CuBDC-NH2/PmPD Mixed Matrix Membranes for Photothermal Conversion [J]. Chem. J. Chinese Universities, 2024, 45(2): 147. |
[4] | LI Xin, ZHOU Ying, WANG Dingnan, PEI Yong, WU Bin, ZHANG Yiming. Selective Adsorption and Computational Simulation of MOF/MIPs Based on Boron-affinity Molecular Imprinting Strategy on Salbutamol [J]. Chem. J. Chinese Universities, 2024, 45(1): 20230348. |
[5] | HUANG Rongting, ZHU Guiying, LI Xinyu, TANG Daoyuan, ZHANG Yong, WANG Bin, ZHU Jintuo, HE Xinjian, XU Huan. Morphological Manipulation of Highly Electroactive Poly(lactic acid) Nanofibrous Membranes for Efficient Removal of Airborne PM0.3 [J]. Chem. J. Chinese Universities, 2024, 45(1): 20230353. |
[6] | ZHANG Hongshu, LIANG Pan, XUE Yingying, WEI Yaoyao. Theoretical Study on Hydrogen Storage and Promoter Effect of Binary Clathrate Hydrates [J]. Chem. J. Chinese Universities, 2024, 45(1): 20230383. |
[7] | YANG Yingnan, SUN Qiming. Synthesis of EAB Zeolite and Its Application in Methanol-to-olefin Reaction [J]. Chem. J. Chinese Universities, 2023, 44(8): 20230119. |
[8] | SHI Yu, ZHANG Liu, GUO Xia, WANG Yang, XIAO Haiqin, FANG Jin, ZHOU Yi, ZHANG Maojie. All-small-molecule Organic Solar Cells with Enhanced Efficiency and Stability Enabled by Polymer Additive as a Morphology Modulator [J]. Chem. J. Chinese Universities, 2023, 44(7): 20230047. |
[9] | LIU Jinlu, GUO Jiayu, HUA Jia, LI Guanghua, SHI Zhan, FENG Shouhua. Construction and Adsorption Properties of an Amide-based Cu-MOF [J]. Chem. J. Chinese Universities, 2023, 44(6): 20220746. |
[10] | LIU Junhui, LI Zijia, WU Shuchang, XIE Zailai, CHEN Yiquan. Synthesis of Biochar Derived from Jujun Grass and the Application in Supercapacitors [J]. Chem. J. Chinese Universities, 2023, 44(4): 20220653. |
[11] | HAN Xu, BAI Xue, ZHANG Zhong, YANG Yanli, CUI Hong, LIU Shuxia. Synthesis and Deep Desulfurization Activity of Fuel Oil of PW11M@Cu3(BTC)2 Hybrid [J]. Chem. J. Chinese Universities, 2023, 44(4): 20220702. |
[12] | XIA Ao, ZENG Xiaoxiong, LI Jiameng, CHEN Jun, TAN Guoqiang. Preparation and Electrochemical Properties of Al3+-Doped δ -MnO2 [J]. Chem. J. Chinese Universities, 2023, 44(4): 20220658. |
[13] | GAO Fengyu, CHEN Du, LUO Ning, YAO Xiaolong, DUAN Erhong, YI Honghong, ZHAO Shunzheng, TANG Xiaolong. Catalytic Performance and Reaction Mechanism of Chlorobenzene Oxidation over MnO x -CeO2 Catalyst [J]. Chem. J. Chinese Universities, 2023, 44(4): 20220690. |
[14] | WANG Pengfei, FU Wenhao, SUN Shaoni, CAO Xuefei, YUAN Tongqi. Preparation of Hierarchical Porous Carbon Materials Using Cellulose Nanocrystals as Templates and Their Electrochemical Properties [J]. Chem. J. Chinese Universities, 2023, 44(2): 20220497. |
[15] | CHEN Shaochen, CHENG Min, WANG Shihui, WU Jinkui, LUO Lei, XUE Xiaoyu, JI Xu, ZHANG Changchun, ZHOU Li. Transfer Learning Modeling for Predicting the Methane and Hydrogen Delivery Capacity of Metal-organic Frameworks [J]. Chem. J. Chinese Universities, 2023, 44(2): 20220459. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||