Chem. J. Chinese Universities ›› 2024, Vol. 45 ›› Issue (5): 20240040.doi: 10.7503/cjcu20240040
• Physical Chemistry • Previous Articles Next Articles
GAO Yongping, LIU Bai, KANG Jianing, LYU Jieqiong, YU Zeguang, ZHANG Zhihui, GAO Wenxiu()
Received:
2024-01-23
Online:
2024-05-10
Published:
2024-02-19
Contact:
GAO Wenxiu
E-mail:gaowenxiu-0922@jlict.edu.cn
Supported by:
CLC Number:
TrendMD:
GAO Yongping, LIU Bai, KANG Jianing, LYU Jieqiong, YU Zeguang, ZHANG Zhihui, GAO Wenxiu. Nitrogen-doped Carbon Material MG-T Heterogeneous Catalyzed Hydrogenation of Nitrobenzene to Aniline[J]. Chem. J. Chinese Universities, 2024, 45(5): 20240040.
Entry | Sample | BET surface area/(m2·g-1) | Pore volume/(cm3·g-1) | Average pore size/nm |
---|---|---|---|---|
1 | MG | 14 | 0.033 | 9 |
2 | MG⁃600 | 261 | 1.450 | 22 |
3 | MG⁃700 | 370 | 1.500 | 16 |
4 | MG⁃800 | 574 | 1.900 | 13 |
Table 1 Physical properties of MG and MG-T
Entry | Sample | BET surface area/(m2·g-1) | Pore volume/(cm3·g-1) | Average pore size/nm |
---|---|---|---|---|
1 | MG | 14 | 0.033 | 9 |
2 | MG⁃600 | 261 | 1.450 | 22 |
3 | MG⁃700 | 370 | 1.500 | 16 |
4 | MG⁃800 | 574 | 1.900 | 13 |
Sample | N(%) | Nitrogen species(%) | ||
---|---|---|---|---|
Pyridinic | Pyrrolic | Graphitic | ||
MG⁃600 | 14.63 | 57 | 14 | 29 |
MG⁃700 | 10.25 | 54 | 7 | 38 |
MG⁃800 | 5.48 | 49 | 5 | 46 |
Table 2 Nitrogen content(%, atomic fraction) in MG-T
Sample | N(%) | Nitrogen species(%) | ||
---|---|---|---|---|
Pyridinic | Pyrrolic | Graphitic | ||
MG⁃600 | 14.63 | 57 | 14 | 29 |
MG⁃700 | 10.25 | 54 | 7 | 38 |
MG⁃800 | 5.48 | 49 | 5 | 46 |
Entry | Catalyst(dosage, mg) | n(Nitrobenzene)/ n(Hydrazine hydrate) | Temperature/℃ | Solvent | Conversion(%) | 103 TOF/(mol·g-1·h-1) |
---|---|---|---|---|---|---|
1 | Blank | 1∶10 | 80 | Ethanol | 5 | 0.6 |
2 | MG(10) | 1∶10 | 80 | Ethanol | 5 | 0.6 |
3 | MG⁃600(10) | 1∶10 | 80 | Ethanol | 41 | 5.1 |
4 | MG⁃700(10) | 1∶10 | 80 | Ethanol | 74 | 9.3 |
5 | MG⁃800(10) | 1∶10 | 80 | Ethanol | 96 | 12.0 |
6 | MG⁃800(10) | 1∶8 | 80 | Ethanol | 74 | 9.3 |
7 | MG⁃800(10) | 1∶6 | 80 | Ethanol | 54 | 6.8 |
8 | MG⁃800(10) | 1∶10 | 70 | Ethanol | 49 | 6.2 |
9 | MG⁃800(10) | 1∶10 | 60 | Ethanol | 25 | 3.1 |
10 | MG⁃800(10) | 1∶10 | 80 | Cyclohexane | 85 | 10.6 |
11 | MG⁃800(10) | 1∶10 | 80 | Toluene | 59 | 7.4 |
12 | MG⁃800(15) | 1∶10 | 80 | Ethanol | 100 | 8.3 |
13 | MG⁃800(5) | 1∶10 | 80 | Ethanol | 35 | 8.8 |
Table 3 Optimization of reaction conditions for MG-T catalysed hydrogenation of nitrobenzene*
Entry | Catalyst(dosage, mg) | n(Nitrobenzene)/ n(Hydrazine hydrate) | Temperature/℃ | Solvent | Conversion(%) | 103 TOF/(mol·g-1·h-1) |
---|---|---|---|---|---|---|
1 | Blank | 1∶10 | 80 | Ethanol | 5 | 0.6 |
2 | MG(10) | 1∶10 | 80 | Ethanol | 5 | 0.6 |
3 | MG⁃600(10) | 1∶10 | 80 | Ethanol | 41 | 5.1 |
4 | MG⁃700(10) | 1∶10 | 80 | Ethanol | 74 | 9.3 |
5 | MG⁃800(10) | 1∶10 | 80 | Ethanol | 96 | 12.0 |
6 | MG⁃800(10) | 1∶8 | 80 | Ethanol | 74 | 9.3 |
7 | MG⁃800(10) | 1∶6 | 80 | Ethanol | 54 | 6.8 |
8 | MG⁃800(10) | 1∶10 | 70 | Ethanol | 49 | 6.2 |
9 | MG⁃800(10) | 1∶10 | 60 | Ethanol | 25 | 3.1 |
10 | MG⁃800(10) | 1∶10 | 80 | Cyclohexane | 85 | 10.6 |
11 | MG⁃800(10) | 1∶10 | 80 | Toluene | 59 | 7.4 |
12 | MG⁃800(15) | 1∶10 | 80 | Ethanol | 100 | 8.3 |
13 | MG⁃800(5) | 1∶10 | 80 | Ethanol | 35 | 8.8 |
Entry | Catalyst | Solvent | Temperature/℃ | Time/h | Yield(%) | Cycle number | Ref. |
---|---|---|---|---|---|---|---|
1 | MG⁃800 | Ethanol | 80 | 4 | 96 | 9 | This work |
2 | CC⁃700 | Ethanol | 100 | 4 | 96 | 5 | [ |
3 | NC⁃950 | Hexane | 50 | 1 | 48.5 | 7 | [ |
4 | NCS⁃800 | Hexane | 90 | 5 | 99 | 5 | [ |
5 | NC⁃700 | Ethanol | 100 | 3.5 | 100 | 8 | [ |
Table 4 Comparison with other similar catalysts
Entry | Catalyst | Solvent | Temperature/℃ | Time/h | Yield(%) | Cycle number | Ref. |
---|---|---|---|---|---|---|---|
1 | MG⁃800 | Ethanol | 80 | 4 | 96 | 9 | This work |
2 | CC⁃700 | Ethanol | 100 | 4 | 96 | 5 | [ |
3 | NC⁃950 | Hexane | 50 | 1 | 48.5 | 7 | [ |
4 | NCS⁃800 | Hexane | 90 | 5 | 99 | 5 | [ |
5 | NC⁃700 | Ethanol | 100 | 3.5 | 100 | 8 | [ |
1 | Yao R. Q., Li Y. Q., Zhang X., Zhao Y. M., Wang Y. H., Lang X. Y., Jiang Q., Tan H. Q., Li Y. G., Chem. Eng. J., 2023, 471, 144487 |
2 | Formenti D., Ferretti F., Scharnagl F. K., Beller M., Chem. Rev., 2019, 119(4), 2611—2680 |
3 | Aljahdali M. S., Amin M. S., Mohamed R. M., Mater. Res. Bull., 2018, 99, 161—167 |
4 | Wang X. T., Yang C. Y., Wang P. Z., Shen C., Chem. Eng. J., 2023, 470, 144195 |
5 | Lu A. Q., Xiang X. K., Lei M., Huang S. S., Liang B. B., Zhao S. Y., Zhu L. H., Tang H. Q., J. Environ. Sci., 2023, https: //doi.org/10.1016/j.jes.2023.10.010 |
6 | Song J. J., Huang Z. F., Pan L., Zou J. J., Zhang X. W., Wang L., ACS Catal., 2015, 5(11), 6594—6599 |
7 | Liu X. E., Dai L. M., Nat. Rev. Mater., 2016, 1(11), 16064 |
8 | Liu J. Y., Yan X. D., Wang L. X., Kong L. M., Jian P. M., J. Colloid Interface Sci., 2017, 497, 102—107 |
9 | Li R. S., Miao Z. P., Li J., Tian X. L., Chem. J. Chinese Universities, 2023, 44(5), 20220730 |
李瑞松, 苗政培, 李静, 田新龙. 高等学校化学学报, 2023, 44(5), 20220730 | |
10 | Luo S. C., Long Y., Liang K., Qin J. H., Qiao Y., Li J., Yang G. X., Ma J. T., Green Chem., 2021, 23(21), 8545—8553 |
11 | Wang S. Y., Jing W., Chang J. W., Lu S. Y., Chem. J. Chinese Universities, 2023, 44(5), 20220733 |
王斯阳, 敬稳, 常江伟, 卢思宇. 高等学校化学学报, 2023, 44(5), 20220733 | |
12 | Wan W. C., Zhao Y. G., Meng J., Allen C. S., Zhou Y., Patzke G. R., Small, 2023, 20(7), 2304663 |
13 | Zheng X. C., Chen S., Li J. Z., Wu H., Zhang C., Zhang D. Y., Chen X., Gao Y., He F., Hui L., Liu H. B., Jiu T. G., Wang N., Li G. X., Xu J. L., Xue Y. R., Huang C. S., Chen C. Y., Guo Y. B., Lu T. B., Wang D., Mao L. Q., Zhang J., Zhang Y., Chi L. F., Guo W. L., Bu X. H., Zhang H. J., Dai L. M., Zhao Y. L., Li Y. L., ACS Nano, 2023, 17(15), 14309—14346 |
14 | Fan M. Y., Long Y., Zhu Y. Y., Hu X. W., Dong Z. P., Appl. Catal. A: Gen., 2018, 568, 130—138 |
15 | Chen D., Wu L., Nie S. Y., Zhang P. F., J. Environ. Chem. Eng., 2021, 9(4), 105649 |
16 | Fiorio J. L., Garcia M. A. S., Gothe M. L., Galvan D., Troise P. C., Conte C. A., Vidinha P., Camargo P. H. C., Rossi L. M., Coord. Chem. Rev., 2023, 481, 215053 |
17 | Zhang H., Zhang C. F., Zhang Y. R., Cui P. L., Zhang Y. F., Wang L., Wang H. L., Gao Y. J., Appl. Surf. Sci., 2019, 487, 616—624 |
18 | Bide Y., Jahromi N. N., Sci. Rep., 2023, 13(1), 1212 |
19 | Villora⁃Picó J. J., Gil⁃Muñoz G., Sepúlveda⁃Escribano A., Pastor⁃Blas M. M., Int. J. Hydrog. Energy, 2024, 53, 490—502 |
20 | Xia Z. Y., Wang B. W., Li J. Y., Zhang F. Y., Chen L. G., Li Y., New J. Chem., 2023, 47(12), 5621—5624 |
21 | Xiong W., Wang Z. N., He S. L., Hao F., Yang Y. Z., Lv Y., Zhang W. B., Liu P. L., Luo H. A., Appl. Catal. B, 2020, 260, 118105 |
22 | Hu X. W., Long Y., Fan M. Y., Yuan M., Zhao H., Ma J. T., Dong Z. P., Appl. Catal. B: Environ., 2019, 244, 25—35 |
23 | Ma Z. Y., Chen J., Chen M., Dong L. K., Mao W. W., Long Y., Ma J. T., Mol. Catal., 2023, 547, 113372 |
24 | Gao W. X., Gao Y. P., Liu B., Kang J. N., Zhang Z. H., Zhang M., Zou Y. C., RSC Adv., 2024, 14, 5055—5060 |
25 | Arrachart G., Carcel C., Trens P., Moreau J. J. E., Man M. W. C., Chem. Eur. J., 2009, 15(25), 6279—6288 |
26 | Qian Y. Q., Du P., Wu P., Cai C. X., Gervasio D. F., J. Phys. Chem. C, 2016, 120(18), 9884—9896 |
27 | He B., Liu F. J, Yan S. K., J. Mater. Chem. A, 2017, 5(34), 18064—18070 |
28 | Lu X. Y., Wang D., Ge L. P., Xiao L. H., Zhang H. Y., Liu L. L., Zhang J. Q., An M. Z., Yang P. X., New J. Chem., 2018, 42(24), 19665—19670 |
29 | Gao W. X., Xing S. Y., Lv J. Q., Xie H., Lou D. W., Wang J. S., Zhang Z. Z., Preparation of a Nitrogen⁃doped Carbon Nanomaterial and Its Application in Nitrobenzene Hydrogenation Reaction, CN 112138698B, 2021⁃03⁃16 |
高文秀, 邢树宇, 吕杰琼, 谢晖, 娄大伟, 王集思, 张志会. 一种氮掺杂碳纳米材料的制备方法及其在硝基苯加氢反应中的应用, CN 112138698B, 2021⁃03⁃16 | |
30 | Liao C. J., Liu B., Chi Q., Zhang Z. H., ACS Appl. Mater. Interfaces, 2018, 10(51), 44421—44429 |
31 | Thomball P. R., Rao K. M., Zo S. M., Narayanan K. B., Thombal R. S., Han S. S., Catal. Lett., 2021, 152(2), 538—546 |
[1] | CHEN Beiyi, GUAN Wenna, JIN Zhao, LIU Tingting, ZHOU Rui. Preparation and Application of Imidazole-based Ionic Liquid and Amide Bipolar Groups Co-embedded Hydrophilic C18 Silica Gel Stationary Phase [J]. Chem. J. Chinese Universities, 2024, 45(4): 20230503. |
[2] | KONG Xiangyu, LIAO Li, LU Canzhong, FANG Qianrong. Application of Covalent Organic Framework-Polyoxometalates Composites in Heterogeneous Catalytic Epoxidation of Olefins [J]. Chem. J. Chinese Universities, 2023, 44(12): 20230282. |
[3] | XIE Xiaolan, LIU Zhan, LYU Jiamin, YU Shen, LI Xiaoyun, SU Baolian, CHEN Lihua. Preparation of Cu-based Hierarchical Pore ZSM-5 Zeolite Single Crystals and Their Catalytic Properties for Nitrobenzene Hydrogenation [J]. Chem. J. Chinese Universities, 2023, 44(10): 20230109. |
[4] | GE Yicong, NIE Wanli, SUN Guofeng, CHEN Jiaxuan, TIAN Chong. Silver-catalyzed [5+1] Cyclization of 2-Vinylanilines with Benzisoxazoles [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220142. |
[5] | ZHOU Zixuan, YANG Haiyan, SUN Yuhan, GAO Peng. Recent Progress in Heterogeneous Catalysts for the Hydrogenation of Carbon Dioxide to Methanol [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220235. |
[6] | LI Jiafu, ZHANG Kai, WANG Ning, SUN Qiming. Research Progress of Zeolite-encaged Single-atom Metal Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220032. |
[7] | LI Haibo, XIAO Changfa, JIANG Long, HUANG Yun, DAN Yi. Copolymerization of Methyl Acrylate and 1-Octene Catalyzed by the Loaded Aluminum Chloride on MCM-41 Molecular Sieve [J]. Chem. J. Chinese Universities, 2021, 42(9): 2974. |
[8] | YANG Sixian, ZHONG Wenyu, LI Chaoxian, SU Qiuyao, XU Bingjia, HE Guping, SUN Fengqiang. Photochemical Fabrication and Performance of Polyaniline Nanowire/SnO2 Composite Photocatalyst [J]. Chem. J. Chinese Universities, 2021, 42(6): 1942. |
[9] | LIU Hengshuo,YU Zhiquan,SUN Zhichao,WANG Yao,LIU Yingya,WANG Anjie. Copper Salt Anchored on a Covalent Organic Framework as Heterogeneous Catalyst for Chan-Lam Coupling Reaction [J]. Chem. J. Chinese Universities, 2020, 41(5): 1091. |
[10] | REN Wen, ZHANG Guoli, YAN Han, HU Xinghua, LI Kun, WANG Jingfeng, LI Ruiqi. Preparation of Superhydrophobic Polyaniline/Polytetrafluoroethylenethylene Composite Membrane and Its Separation Ability for Oil-Water Emulsion † [J]. Chem. J. Chinese Universities, 2020, 41(4): 846. |
[11] | WANG Yanyan, LIU Huizhen, HAN Buxing. Advances in CO2 Hydrogenation to Methanol by Heterogeneous Catalysis [J]. Chem. J. Chinese Universities, 2020, 41(11): 2393. |
[12] | LING Xuxia, LONG Zhu, WANG Shihua, LI Zhiqiang, GUO Shuai, ZHANG Dan. Surface Modified Aramid Pulp with Polyaniline and Conductivity of Its Paper-based Materials [J]. Chem. J. Chinese Universities, 2020, 41(11): 2553. |
[13] | WANG Yihan,YIN Qiang,DU Kai,YIN Qinjian. Polypyrrole/Polyaniline Nanocomposite Nanotubes with Enhanced Thermoelectric Properties † [J]. Chem. J. Chinese Universities, 2020, 41(1): 175. |
[14] | WANG Lin, ZHANG Yanhui, Arzugul Muslim, LAN Haidie. Morphology and Size Regulation of Polyaniline Induced by PS-b-P2VP as Template and Its Electrochemical Characters [J]. Chem. J. Chinese Universities, 2019, 40(8): 1748. |
[15] | DING Zhongxie,LIANG Jinhua,LIU Zhen,SHEN Jiecan,ZHANG Feng,REN Xiaoqian,JIANG Min. Functional Specific Heteropoly Acid Ionic Liquid Catalyzed Direct Esterification of Aqueous Succinate Solution† [J]. Chem. J. Chinese Universities, 2019, 40(5): 1029. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||