Chem. J. Chinese Universities ›› 2024, Vol. 45 ›› Issue (2): 20230447.doi: 10.7503/cjcu20230447
• Physical Chemistry • Previous Articles Next Articles
ZHOU Shengran1, PENG Chao1, GAO Siyu1, YU Di2, ZHANG Chunlei2, WANG Lanyi1, FAN Xiaoqiang1, YU Xuehua1(), ZHAO Zhen1,2(
)
Received:
2023-10-21
Online:
2024-02-10
Published:
2023-12-15
Contact:
YU Xuehua, ZHAO Zhen
E-mail:yuxuehua1986@163.com;zhenzhao@cup.edu.cn
Supported by:
CLC Number:
TrendMD:
ZHOU Shengran, PENG Chao, GAO Siyu, YU Di, ZHANG Chunlei, WANG Lanyi, FAN Xiaoqiang, YU Xuehua, ZHAO Zhen. Preparation of MnOδ Catalysts and Their Catalytic Performance for Combustion of Diesel Exhaust Soot Particles[J]. Chem. J. Chinese Universities, 2024, 45(2): 20230447.
Catalyst | mKMnO4/g | mM* n(NO3)2/g | mK2CO3/g | mKOH/g | Hydrothermal time/h | Calcination temperature/℃ |
---|---|---|---|---|---|---|
MnO δ ⁃t6 | 2.37 | 3.58 | 0.75 | 2.50 | 6 | 550 |
MnO δ ⁃t12 | 2.37 | 3.58 | 0.75 | 2.50 | 12 | 550 |
MnO δ ⁃t18 | 2.37 | 3.58 | 0.75 | 2.50 | 18 | 550 |
MnO δ ⁃t24 | 2.37 | 3.58 | 0.75 | 2.50 | 24 | 550 |
MnO δ ⁃t48 | 2.37 | 3.58 | 0.75 | 2.50 | 48 | 550 |
MnO δ ⁃no all | 2.37 | 3.58 | 0 | 0 | 12 | 550 |
MnO δ ⁃only K2CO3 | 2.37 | 3.58 | 0.75 | 0 | 12 | 550 |
MnO δ ⁃only KOH | 2.37 | 3.58 | 0 | 2.50 | 12 | 550 |
MnO δ ⁃T450 | 2.37 | 3.58 | 0.75 | 2.50 | 12 | 450 |
MnO δ ⁃T650 | 2.37 | 3.58 | 0.75 | 2.50 | 12 | 650 |
MnO δ ⁃T750 | 2.37 | 3.58 | 0.75 | 2.50 | 12 | 750 |
NnO δ ⁃T850 | 2.37 | 3.58 | 0.75 | 2.50 | 12 | 850 |
Table 1 Expression ways and recipes of raw materials for the preparation of MnO δ catalysts
Catalyst | mKMnO4/g | mM* n(NO3)2/g | mK2CO3/g | mKOH/g | Hydrothermal time/h | Calcination temperature/℃ |
---|---|---|---|---|---|---|
MnO δ ⁃t6 | 2.37 | 3.58 | 0.75 | 2.50 | 6 | 550 |
MnO δ ⁃t12 | 2.37 | 3.58 | 0.75 | 2.50 | 12 | 550 |
MnO δ ⁃t18 | 2.37 | 3.58 | 0.75 | 2.50 | 18 | 550 |
MnO δ ⁃t24 | 2.37 | 3.58 | 0.75 | 2.50 | 24 | 550 |
MnO δ ⁃t48 | 2.37 | 3.58 | 0.75 | 2.50 | 48 | 550 |
MnO δ ⁃no all | 2.37 | 3.58 | 0 | 0 | 12 | 550 |
MnO δ ⁃only K2CO3 | 2.37 | 3.58 | 0.75 | 0 | 12 | 550 |
MnO δ ⁃only KOH | 2.37 | 3.58 | 0 | 2.50 | 12 | 550 |
MnO δ ⁃T450 | 2.37 | 3.58 | 0.75 | 2.50 | 12 | 450 |
MnO δ ⁃T650 | 2.37 | 3.58 | 0.75 | 2.50 | 12 | 650 |
MnO δ ⁃T750 | 2.37 | 3.58 | 0.75 | 2.50 | 12 | 750 |
NnO δ ⁃T850 | 2.37 | 3.58 | 0.75 | 2.50 | 12 | 850 |
Catalyst | Crystalline phase primary(secondary) | SBETa / (m²‧g-1) | Smeso b / (m²‧g-1) | Pore volume c /(cm³‧g-1) | Pore volume d /(cm³‧g-1) | Pore size e /nm | Crystalline sizes f /nm |
---|---|---|---|---|---|---|---|
MnO δ ⁃t6 | δ⁃MnO2 | 10.9 | 7.615 | 0.030 | 0.028 | 15.7 | 9.3 |
MnO δ ⁃t12 | δ⁃MnO2 | 12.4 | 9.228 | 0.041 | 0.040 | 16.4 | 9.8 |
MnO δ ⁃t18 | δ⁃MnO2 | 16.7 | 13.766 | 0.052 | 0.050 | 14.6 | 10.3 |
MnO δ ⁃t24 | δ⁃MnO2 | 18.6 | 15.135 | 0.065 | 0.064 | 17.0 | 11.2 |
MnO δ ⁃t48 | δ⁃MnO2 | 22.7 | 20.394 | 0.068 | 0.067 | 14.9 | 13.5 |
MnO δ ⁃no all | Mn2O3(α⁃MnO2) | 32.6 | 31.416 | 0.073 | 0.073 | 9.3 | 25.7 |
MnO δ ⁃only K2CO3 | α⁃MnO2(Mn2O3) | 29.9 | 28.197 | 0.077 | 0.078 | 11.1 | 17.9 |
MnO δ ⁃only KOH | δ⁃MnO2 | 13.2 | 10.210 | 0.047 | 0.046 | 18.0 | 12.2 |
MnO δ ⁃T450 | δ⁃MnO2 | 14.1 | 11.309 | 0.050 | 0.049 | 17.3 | 6.9 |
MnO δ ⁃T650 | δ⁃MnO2(α⁃MnO2) | 6.9 | 4.009 | 0.020 | 0.019 | 18.9 | 23.4 |
MnO δ ⁃T750 | δ⁃MnO2(α⁃MnO2) | 5.9 | 3.681 | 0.019 | 0.018 | 19.0 | 24.8 |
NnO δ ⁃T850 | δ⁃MnO2(α⁃MnO2) | 5.1 | 3.059 | 0.015 | 0.014 | 18.9 | 33.9 |
Table 2 Texture properties of MnO δ catalysts prepared under different experimental conditions
Catalyst | Crystalline phase primary(secondary) | SBETa / (m²‧g-1) | Smeso b / (m²‧g-1) | Pore volume c /(cm³‧g-1) | Pore volume d /(cm³‧g-1) | Pore size e /nm | Crystalline sizes f /nm |
---|---|---|---|---|---|---|---|
MnO δ ⁃t6 | δ⁃MnO2 | 10.9 | 7.615 | 0.030 | 0.028 | 15.7 | 9.3 |
MnO δ ⁃t12 | δ⁃MnO2 | 12.4 | 9.228 | 0.041 | 0.040 | 16.4 | 9.8 |
MnO δ ⁃t18 | δ⁃MnO2 | 16.7 | 13.766 | 0.052 | 0.050 | 14.6 | 10.3 |
MnO δ ⁃t24 | δ⁃MnO2 | 18.6 | 15.135 | 0.065 | 0.064 | 17.0 | 11.2 |
MnO δ ⁃t48 | δ⁃MnO2 | 22.7 | 20.394 | 0.068 | 0.067 | 14.9 | 13.5 |
MnO δ ⁃no all | Mn2O3(α⁃MnO2) | 32.6 | 31.416 | 0.073 | 0.073 | 9.3 | 25.7 |
MnO δ ⁃only K2CO3 | α⁃MnO2(Mn2O3) | 29.9 | 28.197 | 0.077 | 0.078 | 11.1 | 17.9 |
MnO δ ⁃only KOH | δ⁃MnO2 | 13.2 | 10.210 | 0.047 | 0.046 | 18.0 | 12.2 |
MnO δ ⁃T450 | δ⁃MnO2 | 14.1 | 11.309 | 0.050 | 0.049 | 17.3 | 6.9 |
MnO δ ⁃T650 | δ⁃MnO2(α⁃MnO2) | 6.9 | 4.009 | 0.020 | 0.019 | 18.9 | 23.4 |
MnO δ ⁃T750 | δ⁃MnO2(α⁃MnO2) | 5.9 | 3.681 | 0.019 | 0.018 | 19.0 | 24.8 |
NnO δ ⁃T850 | δ⁃MnO2(α⁃MnO2) | 5.1 | 3.059 | 0.015 | 0.014 | 18.9 | 33.9 |
Catalyst | Contact mode | T10/℃ | T50/℃ | T90/℃ | ΔT10a /℃ | ΔT50b /℃ | ΔT90c /℃ | |
---|---|---|---|---|---|---|---|---|
Pure soot | Loose | 461 | 552 | 594 | 38.5 | |||
MnO δ ⁃t6 | Loose | 287 | 325 | 359 | 174 | 227 | 235 | 97.6 |
MnO δ ⁃t12 | Loose | 274 | 321 | 354 | 187 | 231 | 240 | 97.5 |
MnO δ ⁃t18 | Loose | 289 | 332 | 366 | 172 | 220 | 228 | 98.3 |
MnO δ ⁃t24 | Loose | 290 | 334 | 370 | 171 | 218 | 224 | 98.2 |
MnO δ ⁃t48 | Loose | 289 | 334 | 366 | 172 | 218 | 228 | 98.1 |
MnO δ ⁃no all | Loose | 293 | 352 | 389 | 168 | 200 | 205 | 99.4 |
MnO δ ⁃only K2CO3 | Loose | 285 | 342 | 379 | 176 | 210 | 215 | 99.4 |
MnO δ ⁃only KOH | Loose | 288 | 331 | 366 | 173 | 221 | 228 | 97.1 |
MnO δ ⁃T450 | Loose | 272 | 323 | 357 | 189 | 229 | 237 | 96.5 |
MnO δ ⁃T650 | Loose | 286 | 337 | 372 | 175 | 215 | 221 | 97.2 |
MnO δ ⁃T750 | Loose | 288 | 337 | 373 | 173 | 215 | 222 | 97.7 |
NnO δ ⁃T850 | Loose | 291 | 341 | 374 | 170 | 211 | 220 | 97.7 |
Table 3 Catalytic activities for soot combustion of MnO δ catalysts prepared under different experimental conditions
Catalyst | Contact mode | T10/℃ | T50/℃ | T90/℃ | ΔT10a /℃ | ΔT50b /℃ | ΔT90c /℃ | |
---|---|---|---|---|---|---|---|---|
Pure soot | Loose | 461 | 552 | 594 | 38.5 | |||
MnO δ ⁃t6 | Loose | 287 | 325 | 359 | 174 | 227 | 235 | 97.6 |
MnO δ ⁃t12 | Loose | 274 | 321 | 354 | 187 | 231 | 240 | 97.5 |
MnO δ ⁃t18 | Loose | 289 | 332 | 366 | 172 | 220 | 228 | 98.3 |
MnO δ ⁃t24 | Loose | 290 | 334 | 370 | 171 | 218 | 224 | 98.2 |
MnO δ ⁃t48 | Loose | 289 | 334 | 366 | 172 | 218 | 228 | 98.1 |
MnO δ ⁃no all | Loose | 293 | 352 | 389 | 168 | 200 | 205 | 99.4 |
MnO δ ⁃only K2CO3 | Loose | 285 | 342 | 379 | 176 | 210 | 215 | 99.4 |
MnO δ ⁃only KOH | Loose | 288 | 331 | 366 | 173 | 221 | 228 | 97.1 |
MnO δ ⁃T450 | Loose | 272 | 323 | 357 | 189 | 229 | 237 | 96.5 |
MnO δ ⁃T650 | Loose | 286 | 337 | 372 | 175 | 215 | 221 | 97.2 |
MnO δ ⁃T750 | Loose | 288 | 337 | 373 | 173 | 215 | 222 | 97.7 |
NnO δ ⁃T850 | Loose | 291 | 341 | 374 | 170 | 211 | 220 | 97.7 |
Catalyst | Reaction condition | mSoot/mCatalyst | T10/Ti /(℃) | T50/Tm/(℃) | T90/Tf/(℃) | Ref. |
---|---|---|---|---|---|---|
CsMnO x /3DOM⁃m TSO⁃0.7 | 0.2%NO+10%O2, Ar balance | 1∶10 | 284 | 341 | 376 | [ |
PtPd/3DOM TiO2 | 0.2%NO+5%O2, Ar balance | 1∶10 | 262 | 338 | 386 | [ |
K⁃OMS⁃2/3DOMm Ti0.7Si0.3O | 0.2%NO+5%O2, Ar balance | 1∶10 | 273 | 330 | 385 | [ |
3DOM Mn0.5Ce0.5O δ | 0.2%NO+10%O2, Ar balance | 1∶10 | 297 | 358 | 396 | [ |
CeO2@MnO2 | 500 ppm NO+5%O2, N2 balance | 1∶9 | 312 | 373 | 423 | [ |
MnO x ⁃CeO2⁃Al2O3 | 1000 ppm NO+10%O2, N2 balance | 1∶10 | 455 | [ | ||
La0.9Ce0.05K0.05CoO3 | 0.2%NO+10%O2, Ar balance | 1∶10 | 269 | 309 | 342 | [ |
Mn0.09Ce0.91O2 | 0.05%NO+5%O2, N2 balance | 1∶10 | 481 | [ | ||
MnCe⁃1∶4 | 2000 ppm NO+10%O2, Ar balance | 1∶10 | 289 | 340 | 373 | [ |
MnO δ ⁃t12 | 2000 ppm NO+10%O2, Ar balance | 1∶10 | 274 | 321 | 354 | This work |
Table 4 Catalytic activities of as-prepared catalysts and reported catalysts for soot combustion under loose contact conditions*
Catalyst | Reaction condition | mSoot/mCatalyst | T10/Ti /(℃) | T50/Tm/(℃) | T90/Tf/(℃) | Ref. |
---|---|---|---|---|---|---|
CsMnO x /3DOM⁃m TSO⁃0.7 | 0.2%NO+10%O2, Ar balance | 1∶10 | 284 | 341 | 376 | [ |
PtPd/3DOM TiO2 | 0.2%NO+5%O2, Ar balance | 1∶10 | 262 | 338 | 386 | [ |
K⁃OMS⁃2/3DOMm Ti0.7Si0.3O | 0.2%NO+5%O2, Ar balance | 1∶10 | 273 | 330 | 385 | [ |
3DOM Mn0.5Ce0.5O δ | 0.2%NO+10%O2, Ar balance | 1∶10 | 297 | 358 | 396 | [ |
CeO2@MnO2 | 500 ppm NO+5%O2, N2 balance | 1∶9 | 312 | 373 | 423 | [ |
MnO x ⁃CeO2⁃Al2O3 | 1000 ppm NO+10%O2, N2 balance | 1∶10 | 455 | [ | ||
La0.9Ce0.05K0.05CoO3 | 0.2%NO+10%O2, Ar balance | 1∶10 | 269 | 309 | 342 | [ |
Mn0.09Ce0.91O2 | 0.05%NO+5%O2, N2 balance | 1∶10 | 481 | [ | ||
MnCe⁃1∶4 | 2000 ppm NO+10%O2, Ar balance | 1∶10 | 289 | 340 | 373 | [ |
MnO δ ⁃t12 | 2000 ppm NO+10%O2, Ar balance | 1∶10 | 274 | 321 | 354 | This work |
Cycle times | T10/℃ | T50/℃ | T90/℃ | |
---|---|---|---|---|
Cycle⁃1 | 274 | 321 | 354 | 97.5 |
Cycle⁃2 | 284 | 328 | 357 | 97.5 |
Cycle⁃3 | 286 | 328 | 358 | 97.6 |
Cycle⁃4 | 286 | 331 | 361 | 97.1 |
Cycle⁃5 | 286 | 332 | 362 | 97.6 |
Table 5 Stability of MnO δ ⁃t12 catalyst for soot combustion
Cycle times | T10/℃ | T50/℃ | T90/℃ | |
---|---|---|---|---|
Cycle⁃1 | 274 | 321 | 354 | 97.5 |
Cycle⁃2 | 284 | 328 | 357 | 97.5 |
Cycle⁃3 | 286 | 328 | 358 | 97.6 |
Cycle⁃4 | 286 | 331 | 361 | 97.1 |
Cycle⁃5 | 286 | 332 | 362 | 97.6 |
1 | Mei X. Y., Zhu X. B., Zhang Y. X., Zhang Z. L., Zhong Z. H., Xin Y., Zhang J., Nat. Catal., 2021, 4(12), 1002—1011 |
2 | Luo T. Y., Liu S. R., Li M., Liu W., Wu X. D., Liu S., J. Catal., 2022, 408, 56—63 |
3 | Gao S. Y., Yu D., Zhou S. R. Zhang C. L., Wang L. Y., Fan X. Q., Yu X. H., Zhao Z., J. Mater. Chem. A, 2023, 11, 19210 |
4 | Yu X. H., Yu D., Wang L. Y., Ren Y., Chen M. Z., Fan X. Q., Zhao Z., Sojka Z., Kotarba A., Wei Y. C., Liu J., Catal. Sci. Technol., 2023, 13, 1208 |
5 | Dhinesh B., Bharathi R. N., Lalvani J. I. J., Parthasarathy M., Annamalai K., J. Energy Inst., 2017, 90(4), 634—645 |
6 | Dhinesh B., Lalvani J. I. J., Parthasarathy M., Annamalai K., Energy Convers. Manag., 2016, 117, 466—474 |
7 | Zhang Z. H., Balasubramanian R., Appl. Energy, 2014, 119, 530—536 |
8 | Foo K. K., Sun Z. W., Medwell P. R., Alwahabi Z. T., Nathan G. J., Dally B. B., Combust Flame, 2018, 194, 376—386 |
9 | Agarwal A. K., Dhar A., Gupta J. G., Kim W. I., Lee C. S., Park S., Appl. Energy, 2014, 130, 212—221 |
10 | Cao C. M., Xing L. L., Yang Y. X., Tian Y., Ding T., Zhang J., Hu T. D., Zheng L. R., Li X. G., Appl. Catal. B, 2017, 218, 32—45 |
11 | Zhao M. J., Deng J. L., Liu J., Li Y. H., Liu J. X., Duan Z. C., Xiong J., Zhao Z., Wei Y. C., Song W. Y., Sun Y. Q., ACS Catal., 2019, 9(8), 7548—7567 |
12 | Kim M. J., Lee E. J., Lee E., Kim D. H., Lee D. W., Kim C. H., Lee K. Y., Appl. Surf. Sci., 2021, 569, 151041 |
13 | Wei Y. C., Zhao Z., Liu J., Xu C. M., Jiang G. Y., Duan A. J., Small, 2013, 9(23), 3957—3963 |
14 | Mukherjee D., Reddy B. M., Catalysis Today, 2018, 309, 227—235 |
15 | Liu T. Z., Li Q., Xin Y., Zhang Z. L., Tang X. F., Zheng L. R.. Gao P. X., Appl. Catal. B, 2018, 232, 108—116 |
16 | Hernández⁃Giménez A. M., Xavier L. P. D., Bueno⁃López X., Appl. Catal. Gen., 2013, 462, 100—106 |
17 | Liao Y. X., Liu P., Zhang J., Wang C., Chen L. W., Yan D. F., Ren Q. M., Liang X. L., Fu M. G., Suib Steven L., Ye D. Q., Chemosphere, 2023, 334, 138995 |
18 | Singer C., Kureti S., Appl. Catal. B, 2020, 272, 118961 |
19 | Chen H., Wang Y., Lv Y. K., RSC Adv., 2016, 6(59), 54032—54040 |
20 | Chen B. B., Wu B., Yu L. M., Crocker M., Shi C., ACS Catal., 2020, 10(11), 6176—6187 |
21 | Wang J. L., Li J., Zhang P. Y., Zhang G. K., Appl. Catal. B, 2018, 224, 863—870 |
22 | Xu F., Huang Z. W., Hu P. P., Chen Y. X., Zheng L., Gao J. Y., Tang X. F., ChemComm, 2015, 51(48), 9888—9891 |
23 | Zhang J. H., Li Y. B., Wang L., Zhang C. B., He H., Catal. Sci. Technol., 2015, 5(4), 2305—2313 |
24 | Liang S. H., Bulgan F. T. G., Zong R. L., Zhu Y. F., J. Phys. Chem. C, 2008, 112(14), 5307—5315 |
25 | Cheng L., Men Y., Wang J. G., Wang H., An W., Wang Y. Q., Duan Z. C., Liu J., Appl. Catal. B, 2017, 204, 374—384 |
26 | Yu D., Ren Y., Yu X. H., Fan X. Q., Wang L. Y., Wang R. D., Zhao Z., Cheng K., Chen Y. S., Sojka Z., Kotarba A., Wei Y. C., Liu J., Appl. Catal. B, 2021, 285, 119779 |
27 | Yu X. H., Li J. M., Wei Y. C., Zhao Z., Liu, J., Jin B. F., Duan A. J., Jiang G. Y., Ind. Eng. Chem. Res., 2014, 53(23), 9653— 9664 |
28 | Liu Y., Yang W. J., Zhang P. Y., Zhang J. Y., Appl. Surf. Sci., 2018, 442, 640—649 |
29 | Senthilkumar N., Kumar G. G., Manthiram A., Adv. Energy Mater., 2018, 8(6), 1702207 |
30 | Li Q. Q., Huang X. C., Su G. J., Zheng M. H., Huang C. H., Wang M. J., Ma C. Y., Wei D., Environ. Sci. Technol., 2018, 52(22), 13351—13360 |
31 | Cui D. Y., Gao K., Lu P., Yang H., Liu Y. N., Xue D. F., Funct. Mater. Lett., 2011, 4(1), 57—60 |
32 | Thackeray M. M. Prog. Solid. State Ch., 1997, 25(1/2), 1—71 |
33 | Liu J. T., Ge X., Ye X. X., Wang G. Z., Zhang H. M., Zhou H. J., Zhang Y. X., Zhao H. J., J. Mater. Chem. A, 2016, 4(5), 1970—1979 |
34 | Chan Z. M., Kitchaev D. A., Weker J. N., Schnedermann C., Lim K., Ceder G., Tumas W., Toney M. F., Nocera D. G., Proc. Natl. Acad. Sci. USA, 2018, 115(23), e5261—e5268 |
35 | Cabello G., Davoglio R. A., Appl. Catal. B, 2017, 218, 192—198 |
36 | Santos V. P., Pereira M. F. R., Orfao J. J. M., Figueiredo J. L., Appl. Catal. B, 2010, 99(1/2), 353—363 |
37 | Zheng Y. L., Wang W. Z., Jiang D., Zhang L., Chem. Eng. J., 2016, 284, 21—27 |
38 | Peng C., Yu D., Zhang C. L., Chen M. Z., Wang L. Y., Yu X. H., Fan X. Q., Zhao Z., Cheng K., Chen Y. S., Wei Y. C., Liu J., J. Environ Sci.(China), 2023, 125, 82—94 |
39 | Wu Q. Q., Xiong J., Li J. M., Liu J., Zhao Z., Hao S. J., Catal. Today, 2019, 327, 143—153 |
40 | Xiong J., Wei Y. C., Zhang Y. L., Zhang P., Yu Q., Mei X. L., Liu X., Zhao Z., Jian L., ACS Catal., 2020, 10(13), 7123—7135 |
41 | Yu X. H., Li J. M., Wei Y. C., Zhao Z., Liu J., Jin B. F., Duan A. J., Jiang G. Y., Ind. Eng. Chem. Res., 2014, 53(23), 9653—9664 |
42 | Feng N. J., Zhu Z. J., Zhao P., Wang L., Wan H., Guan G. F., Appl. Surf. Sci., 2020, 515(15), 146013 |
43 | Wu X. D., Liu S., Weng D., Lin F., Ran R., J. Hazard. Mater., 2021, 187, 283—290 |
44 | Yu D., Wang L. Y., Zhang C. L., Peng C., Yu X. H., Fan X. Q., Liu B., Li K. X., Li Z. G., Wei Y. C., Jian L., Zhao Z., ACS Catal., 2022, 12, 15056—15075 |
45 | Wang J. G., Yang S. F., Sun H. H., Qiu J. Q., Men Y., J. Colloid Interface Sci., 2020, 577, 355—367 |
46 | Gao S. Y., Yu D., Zhou S. R., Zhang C. L., Wang L. Y., Fan X. Q., Yu X. H., Zhao Z., Processes, 2023, 11, 2902 |
[1] | YAO Yixuan, LU Changbo, ZHANG Hongwei, ZHANG Duxin, SHANG Hongyan, TIAN Yuanyu. Catalytic Performance of [Fe] for Regioselective Ring-opening of Epoxides [J]. Chem. J. Chinese Universities, 2023, 44(8): 20230137. |
[2] | XU Deyi, DING Chaojun, LI Fang, LIU Yueming, HE Mingyuan. P-Modified Deactivated TS-1 as an Efficient Catalyst for Catalytic Cracking of Pentene to Ethene and Propene [J]. Chem. J. Chinese Universities, 2023, 44(8): 20230094. |
[3] | FENG Ruiqin, FANG Yun, FAN Ye, XIA Yongmei. Facile Synthesis of Gold Nanoflowers and the Catalytic Reduction of p-Nitrophenol with Sodium Borohydride [J]. Chem. J. Chinese Universities, 2023, 44(8): 20230027. |
[4] | HUANG Dingmin, SUN Haotian, WANG Zhenwei, LIU Hao, SU Xianbin. 3-Quinoline Boric Acid as an Efficient Catalyst for the Direct Amidation of Carboxylic Acids at Room Temperature [J]. Chem. J. Chinese Universities, 2023, 44(6): 20230004. |
[5] | ZHU Yingying, YAN Xiaoyu, YU Jing, MAN Wenxin, LIU Feng, ZHOU Ying, MA Xiantao. Catalyst-free and Efficient Synthesis of Disulfanes [J]. Chem. J. Chinese Universities, 2023, 44(6): 20230045. |
[6] | HUANG Jin, GUO Lijun, LI Feng, LI Yang, LI Cuiqin. Preparation and Catalytic Behavior in Ethylene Oligomerization of Nickel Catalyst Supported by Dendritic PAMAM Functionalized Nano-silica [J]. Chem. J. Chinese Universities, 2023, 44(6): 20220778. |
[7] | ZHAO Qian, LI Shang, CHENG Kuangwei, WEN Zhiyong, ZHANG Xiaoyu, YI Shaojie, PAN Mu. Study on Nitrogen-doped PtCo/C Alloy Catalyst [J]. Chem. J. Chinese Universities, 2023, 44(6): 20230016. |
[8] | NAN Jiang, LIU Shilei, HUANG Guanjie. In(OTf)3-catalyzed Intermolecular [3+2+1] Cyclization of Two Imine Units [J]. Chem. J. Chinese Universities, 2023, 44(6): 20220714. |
[9] | HOU Junying, HOU Chuanyuan, HAO Jianjun, LI Jianchang, WANG Yaya. Fabrication of Copper-doped Porous NiO Heterogeneous Catalyst and Its Application in Aerobic Oxidation of Benzyl Alcohol [J]. Chem. J. Chinese Universities, 2023, 44(6): 20230042. |
[10] | BIAN Xuanang, ZHOU Chao, ZHAO Yunxuan, ZHANG Tierui. Light-driven Ammonia Synthesis over Layered-double- hydroxide-derived Ru Catalyst [J]. Chem. J. Chinese Universities, 2023, 44(6): 20230095. |
[11] | DU Lei, LIU Zhaoqing. Non-precious Metal Catalysts for Electro-oxidation Upgrading of 5-Hydroxymethy Furfural [J]. Chem. J. Chinese Universities, 2023, 44(5): 20220710. |
[12] | WANG Jun, DU Shiqian, TAO Li. Recent Progress of Catalysts in the High Temperature Polymer Electrolyte Membrane Fuel Cells [J]. Chem. J. Chinese Universities, 2023, 44(5): 20220722. |
[13] | ZHANG Xiaoyu, QU Gan, XUE Dongping, YAN Wenfu, ZHANG Jianan. Recent Process of Carbon-based Catalysts for the Production of H2O2 by Electrocatalytic Oxygen Reduction: Strategies, Calculation and Practical Applications [J]. Chem. J. Chinese Universities, 2023, 44(5): 20220775. |
[14] | LI Ruisong, MIAO Zhengpei, LI Jing, TIAN Xinlong. Research Progress on Hollow Precious Metal-based Nanostructures for Oxygen Reduction Reaction [J]. Chem. J. Chinese Universities, 2023, 44(5): 20220730. |
[15] | XU Ruotao, WANG Qiang, BAO Qingjia, WANG Weiyu, ZHANG Zhi, LIU Zhaoyang, XU Jun, DENG Feng. In situ Magnetic Resonance Imaging of Solvent Infiltration on γ -Al2O3 Particles [J]. Chem. J. Chinese Universities, 2023, 44(4): 20220587. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||