Chem. J. Chinese Universities ›› 2023, Vol. 44 ›› Issue (5): 20220710.doi: 10.7503/cjcu20220710
• Review • Previous Articles Next Articles
Received:
2022-11-09
Online:
2023-05-10
Published:
2023-01-15
Contact:
LIU Zhaoqing
E-mail:lzqgzu@gzhu.edu.cn
Supported by:
CLC Number:
TrendMD:
DU Lei, LIU Zhaoqing. Non-precious Metal Catalysts for Electro-oxidation Upgrading of 5-Hydroxymethy Furfural[J]. Chem. J. Chinese Universities, 2023, 44(5): 20220710.
Value⁃added product | Application |
---|---|
DFF | Synthesis of antifungal drugs, organic conductors, heterocyclic ligands, etc. |
HMFCA | Synthesis of polyester intermediates, anti⁃tumor drugs, interleukin inhibitors, etc. |
FFCA | Synthesis of surfactants, resins, etc. |
FDCA | Synthesis of monomer for PEF, succinic acid, etc. |
Table 1 The value-added products derived from HMFOR and their possible applications
Value⁃added product | Application |
---|---|
DFF | Synthesis of antifungal drugs, organic conductors, heterocyclic ligands, etc. |
HMFCA | Synthesis of polyester intermediates, anti⁃tumor drugs, interleukin inhibitors, etc. |
FFCA | Synthesis of surfactants, resins, etc. |
FDCA | Synthesis of monomer for PEF, succinic acid, etc. |
Catalyst | c(HMF)/(mmol·L-1) | Potential/V(vs. RHE) | CD a /(mA·cm-2) | FC b (%) | FE c (%) | Ref. |
---|---|---|---|---|---|---|
Ni3S2 | 10 | 1.423 | >200 | 95 | 98 | [ |
Ni2P NPA | 10 | 1.423 | >200 | 100 | 100 | [ |
Co⁃P | 50 | 1.423 | 50 | 90 | 90 | [ |
Ni3N@C | 10 | 1.38 | 50 | 98 | 99 | [ |
NixB | 10 | 1.45 | 100 | 98.5 | 100 | [ |
CoB | 10 | 1.39 | 10 | 94 | 98 | [ |
NiO/Ni(OH)2 | 5 | 71 | 84 | [ | ||
CoO⁃CoSe2 | 10 | 1.3 | 1 | 99 | 97.9 | [ |
ZnCo2O4 | 50 | 1.23 | 1 | 93.7 | 94 | [ |
NiFe⁃LDHs | 10 | 1.32 | 20 | 99.4 | 99.4 | [ |
NiCoFe⁃LDHs | 5 | 1.51 | 20 | 95.5 | 84.9 | [ |
NiOOH | 5 | 96 | 96 | [ | ||
CoOOH | 5 | 35.1 | 35.1 | [ | ||
FeOOH | 5 | 1.59 | 1.59 | [ |
Table 2 Typical non-precious metal catalysts and their HMFOR performances
Catalyst | c(HMF)/(mmol·L-1) | Potential/V(vs. RHE) | CD a /(mA·cm-2) | FC b (%) | FE c (%) | Ref. |
---|---|---|---|---|---|---|
Ni3S2 | 10 | 1.423 | >200 | 95 | 98 | [ |
Ni2P NPA | 10 | 1.423 | >200 | 100 | 100 | [ |
Co⁃P | 50 | 1.423 | 50 | 90 | 90 | [ |
Ni3N@C | 10 | 1.38 | 50 | 98 | 99 | [ |
NixB | 10 | 1.45 | 100 | 98.5 | 100 | [ |
CoB | 10 | 1.39 | 10 | 94 | 98 | [ |
NiO/Ni(OH)2 | 5 | 71 | 84 | [ | ||
CoO⁃CoSe2 | 10 | 1.3 | 1 | 99 | 97.9 | [ |
ZnCo2O4 | 50 | 1.23 | 1 | 93.7 | 94 | [ |
NiFe⁃LDHs | 10 | 1.32 | 20 | 99.4 | 99.4 | [ |
NiCoFe⁃LDHs | 5 | 1.51 | 20 | 95.5 | 84.9 | [ |
NiOOH | 5 | 96 | 96 | [ | ||
CoOOH | 5 | 35.1 | 35.1 | [ | ||
FeOOH | 5 | 1.59 | 1.59 | [ |
Table 3 The oretical ΔHfFERE and experimental ΔHfexp of several typical transition metal-based compounds[60]
Category | Initial material | Real active material | Electrolyte | Ref. |
---|---|---|---|---|
Sulfide | Cu2S/CM | CuO/CM | 1.0 mol/L KOH | [ |
NiS/Ni | NiOOH | 1.0 mol/L KOH | [ | |
CoS x | CoOOH | 1.0 mol/L KOH | [ | |
Phosphide | Ni5P4 | NiOOH | 1.0 mol/L KOH | [ |
Ni2P | NiO x | 1.0 mol/L KOH | [ | |
NiFeP | NiFeOOH | 1.0 mol/L NaOH | [ | |
Nitride | Ni3N | NiO | 1.0 mol/L KOH | [ |
CoN | Co3O4 | 1.0 mol/L KOH | [ | |
Co4N | Co3O4 | 1.0 mol/L KOH | [ | |
Carbide | Co3C | CoO x | 1.0 mol/L NaOH | [ |
β⁃Mo2C | MoO2 | 1.0 mol/L KOH | [ | |
Ni3C/C | NiO x | 1.0 mol/L KOH | [ |
Table 4 Typical transition metal Xides and their derivates(real active materials) during anodic reactions
Category | Initial material | Real active material | Electrolyte | Ref. |
---|---|---|---|---|
Sulfide | Cu2S/CM | CuO/CM | 1.0 mol/L KOH | [ |
NiS/Ni | NiOOH | 1.0 mol/L KOH | [ | |
CoS x | CoOOH | 1.0 mol/L KOH | [ | |
Phosphide | Ni5P4 | NiOOH | 1.0 mol/L KOH | [ |
Ni2P | NiO x | 1.0 mol/L KOH | [ | |
NiFeP | NiFeOOH | 1.0 mol/L NaOH | [ | |
Nitride | Ni3N | NiO | 1.0 mol/L KOH | [ |
CoN | Co3O4 | 1.0 mol/L KOH | [ | |
Co4N | Co3O4 | 1.0 mol/L KOH | [ | |
Carbide | Co3C | CoO x | 1.0 mol/L NaOH | [ |
β⁃Mo2C | MoO2 | 1.0 mol/L KOH | [ | |
Ni3C/C | NiO x | 1.0 mol/L KOH | [ |
1 | Seh Z. W., Kibsgaard J., Dickens C. F., Chorkendorff I., Nørskov J. K., Jaramillo T. F., Science, 2017, 355, eaad4998 |
2 | Zeng L., Sun K., Chen Y., Liu Z., Chen Y., Pan Y., Zhao R., Liu Y., Liu C., J. Mater. Chem. A, 2019, 7, 16793—16802 |
3 | Hu C., Zhang L., Gong J., Energy Environ. Sci., 2019, 12, 2620—2645 |
4 | Walter M. G., Warren E. L., McKone J. R., Boettcher S. W., Mi Q., Santori E. A., Lewis N. S., Chem. Rev., 2010, 110, 6446—6473 |
5 | Guo X., Du H., Qu F., Li J., J. Mater. Chem. A, 2019, 7, 3531—3543 |
6 | Du L., Xing L., Zhang G., Liu X., Rawach D., Sun S., Sus. Mat., 2021, 1, 150—173 |
7 | Kyriakou V., Garagounis I., Vasileiou E., Vourros A., Stoukides M., Catal. Today, 2017, 286, 2—13 |
8 | Yang H., Lin Q., Zhang C., Yu X., Cheng Z., Li G., Hu Q., Ren X., Zhang Q., Liu J., He C., Nat. Commun., 2020, 11, 593 |
9 | Handoko A. D., Wei F., Jenndy Yeo B. S., Seh Z. W., Nat. Catal., 2018, 1, 922—934 |
10 | Sumida K., Rogow D. L., Mason J. A., McDonald T. M., Bloch E. D., Herm Z. R., Bae T. H., Long J. R., Chem. Rev., 2012, 112, 724—781 |
11 | Sun Y., Han G., Du L., Du C., Zhou X., Sun Q., Gao Y., Yin G., Li Y., Wang Y., Chem. Catal., 2021, 1, 1260—1272 |
12 | Simoes M., Baranton S., Coutanceau C., ChemSusChem, 2012, 5, 2106—2124 |
13 | Liu Y., Yu W., Raciti D., Gracias D. H., Wang C., J. Phys. Chem. C, 2018, 123, 426—432 |
14 | Lari G. M., Pastore G., Haus M., Ding Y., Papadokonstantakis S., Mondelli C., Pérez⁃Ramírez J., Energy Environ. Sci., 2018, 11, 1012—1029 |
15 | Dodekatos G., Schünemann S., Tüysüz H., ACS Catal., 2018, 8, 6301—6333 |
16 | Wang W., Jing W., Sheng L., Chai D., Kang Y., Lei Z., Appl. Catal. A, 2017, 538, 123—130 |
17 | Zanata C. R., Fernández P. S., Troiani H. E., Soldati A. L., Landers R., Camara G. A., Carvalho A. E., Martins C. A., Appl. Catal. B: Environ., 2016, 181, 445—455 |
18 | Luo R., Li Y., Xing L., Wang N., Zhong R., Qian Z., Du C., Yin G., Wang Y., Du L., Appl. Catal. B: Environ., 2022, 311, 121357 |
19 | Kwon Y., Schouten K. J. P., van der Waal J. C., de Jong E., Koper M. T. M., ACS Catal., 2016, 6, 6704—6717 |
20 | Zhong R., Wang Q., Du L., Pu Y., Ye S., Gu M., Conrad Zhang Z., Huang L., Appl. Surf. Sci., 2022, 584 |
21 | Chen C., Wang L., Zhu B., Zhou Z., El⁃Hout S. I., Yang J., Zhang J., J. Energy Chem., 2021, 54, 528—554 |
22 | Gao L., Liu Z., Ma J., Zhong L., Song Z., Xu J., Gan S., Han D., Niu L., Appl. Catal. B: Environ., 2020, 261 |
23 | Luo R., Li Y., Wang N., Zhong R., Xing L., Zhu L., Wang Y., Du L., Ye S., J. Phys. Chem. C, 2023, doi: 10.1021/acs.jpcc.2c08946 |
24 | Bozell J. J., Petersen G. R., Green Chem., 2010, 12, 539 |
25 | Corma A., Iborra S., Velty A., Chem. Rev., 2007, 107, 2411—2502 |
26 | Wang T., Ide M. S., Nolan M. R., Davis R. J., Shanks B. H., Energy Environ. Focus, 2016, 5, 13—17 |
27 | Nie J., Xie J., Liu H., J. Catal., 2013, 301, 83—91 |
28 | Chadderdon D. J., Xin L., Qi J., Qiu Y., Krishna P., More K. L., Li W., Green Chem., 2014, 16, 3778—3786 |
29 | Verevkin S. P., Emel'yanenko V. N., Stepurko E. N., Ralys R. V., Zaitsau D. H., Stark A., Ind. Eng. Chem. Res., 2009, 48, 10087—10093 |
30 | Hu L., He A. Y., Liu X. Y., Xia J., Xu J. X., Zhou S. Y., Xu J. M., ACS Sustainable Chem. Eng., 2018, 6, 15915—15935 |
31 | Tong X. L., Ma Y., Li Y. D., Appl. Catal. A, 2010, 385, 1—13 |
32 | Lu Y. X., Dong C. L., Huang Y. C., Zou Y. Q., Liu Y. B., Li Y. Y., Zhang N. N., Chen W., Zhou L., Lin H. Z., Wang S. Y., Sci. China: Chem., 2020, 63, 980—986 |
33 | Han X. W., Li C. Q., Guo Y., Liu X. H., Zhang Y. G., Wang Y. Q., Appl. Catal. A, 2016, 526, 1—8 |
34 | Gorbanev Y. Y., Kegaens S., Riisager A., Top. Catal., 2011, 54, 1318—1324 |
35 | Tang C., Zheng Y., Jaroniec M., Qiao S. Z., Angew. Chem., Int. Ed., 2021, 60, 19572—19590 |
36 | Du L., Shao Y. Y., Sun J. M., Yin G. P., Du C. Y., Wang Y., Catal. Sci. Technol., 2018, 8, 3216—3232 |
37 | Li R., Xiang K., Peng Z., Zou Y., Wang S., Adv. Energy Mater., 2021, 11, 2102292 |
38 | Horn E. J., Rosen B. R., Chen Y., Tang J., Chen K., Eastgate M. D., Baran P. S., Nature, 2016, 533, 77—81 |
39 | Wang T., Tao L., Zhu X., Chen C., Chen W., Du S., Zhou Y., Zhou B., Wang D., Xie C., Long P., Li W., Wang Y., Chen R., Zou Y., Fu X. Z., Li Y., Duan X., Wang S., Nat. Catal., 2021, doi: 10.1038/s41929⁃021⁃00721⁃y |
40 | Bellini M., Bevilacqua M., Innocenti M., Lavacchi A., Miller H. A., Filippi J., Marchionni A., Oberhauser W., Wang L., Vizza F., J. Electrochem. Soc., 2014, 161, D3032—D3043 |
41 | Choi S., Balamurugan M., Lee K. G., Cho K. H., Park S., Seo H., Nam K. T., J. Phys. Chem. Lett., 2020, 11, 2941—2948 |
42 | Zhang X., Cheng X., Zhang Q., J. Energy Chem., 2016, 25, 967—984 |
43 | McCrory C. C., Jung S., Ferrer I. M., Chatman S. M., Peters J. C., Jaramillo T. F., J. Am. Chem. Soc., 2015, 137, 4347—4357 |
44 | Du L., Luo L., Feng Z., Engelhard M., Xie X., Han B., Sun J., Zhang J., Yin G., Wang C., Wang Y., Shao Y., Nano Energy, 2017, 39, 245—252 |
45 | Lin R., Salehi M., Guo J., Seifitokaldani A., iScience, 2022, 25, 104744 |
46 | Sun Y., Wang J., Qi Y., Li W., Wang C., Adv. Sci., 2022, 9, e2200957 |
47 | Jiang N., You B., Boonstra R., Rodriguez I. M. T., Sun Y. J., ACS Energy Lett., 2016, 1, 386—390 |
48 | Cha H. G., Choi K. S., Nat. Chem., 2015, 7, 328—333 |
49 | You B., Liu X., Jiang N., Sun Y., J. Am. Chem. Soc., 2016, 138, 13639—13646 |
50 | You B., Jiang N., Liu X., Sun Y., Angew Chem. Int. Ed., 2016, 55, 9913—9917 |
51 | Zhang N., Zou Y., Tao L., Chen W., Zhou L., Liu Z., Zhou B., Huang G., Lin H., Wang S., Angew. Chem. Int. Ed., 2019, 58, 15895—15903 |
52 | Barwe S., Weidner J., Cychy S., Morales D. M., Dieckhofer S., Hiltrop D., Masa J., Muhler M., Schuhmann W., Angew. Chem., Int. Ed., 2018, 57, 11460—11464 |
53 | Weidner J., Barwe S., Sliozberg K., Piontek S., Masa J., Apfel U. P., Schuhmann W., Beilstein J. Org. Chem., 2018, 14, 1436—1445 |
54 | Grabowski G., Lewkowski J., Skowronski R., Electrochim. Acta, 1991, 36, 1995 |
55 | Huang X., Song J. L., Hua M. L., Xie Z. B., Liu S. S., Wu T. B., Yang G. Y., Han B. X., Green Chem., 2020, 22, 843—849 |
56 | Lu Y., Dong C. L., Huang Y. C., Zou Y., Liu Z., Liu Y., Li Y., He N., Shi J., Wang S., Angew. Chem. Int. Ed., 2020, 59, 19215—19221 |
57 | Liu W. J., Dang L. N., Xu Z. R., Yu H. Q., Jin S., Huber G. W., ACS Catal., 2018, 8, 5533—5541 |
58 | Zhang M., Liu Y. Q., Liu B. Y., Chen Z., Xu H., Yan K., ACS Catal., 2020, 10, 5179—5189 |
59 | Taitt B. J., Nam D. H., Choi K. S., ACS Catal., 2018, 9, 660—670 |
60 | Stevanović V., Lany S., Zhang X., Zunger A., Phy. Rev. B, 2012, 85 |
61 | Zhou B., Dong C. L., Huang Y. C., Zhang N., Wu Y., Lu Y., Yue X., Xiao Z., Zou Y., Wang S., J. Energy Chem., 2021, 61, 179—185 |
62 | Wang M., Fu W., Du L., Wei Y., Rao P., Wei L., Zhao X., Wang Y., Sun S., Appl. Surf. Sci., 2020, 515, 146059 |
63 | Yang C. C., Zai S. F., Zhou Y. T., Du L., Jiang Q., Adv. Funct. Mater., 2019, 29, 1901949 |
64 | Luo R., Qian Z., Xing L., Du C., Yin G., Zhao S., Du L., Adv. Funct. Mater., 2021, 31, 2102918 |
65 | Ding X., Li W., Kuang H., Qu M., Cui M., Zhao C., Qi D. C., Oropeza F. E., Zhang K. H. L., Nanoscale, 2019, 11, 23217—23225 |
66 | Liu P. F., Li X., Yang S., Zu M. Y., Liu P. R., Zhang B., Zheng L. R., Zhao H. J., Yang H. G., ACS Energy Lett., 2017, 2, 2257—2263 |
67 | Zu M. Y., Wang C. W., Zhang L., Zheng L. R., Yang H. G., Mater. Horiz., 2019, 6, 115—121 |
68 | Ledendecker M., Krick Calderon S., Papp C., Steinruck H. P., Antonietti M., Shalom M., Angew. Chem. Int. Ed., 2015, 54, 12361—12365 |
69 | Zuo Y., Liu Y. P., Li J. S., Du R. F., Han X., Zhang T., Arbiol J., Divins N. J., Llorca J., Guijarro N., Sivula K., Cabot A., Chem. Mater., 2019, 31, 7732—7743 |
70 | Yan C. Y., Huang J. W., Wu C. Y., Li Y. Y., Tan Y. C., Zhang L. Y., Sun Y. H., Huang X. N., Xiong J., J. Mater. Sci. Technol., 2020, 42, 10—16 |
71 | Fan K., Zou H., Lu Y., Chen H., Li F., Liu J., Sun L., Tong L., Toney M. F., Sui M., Yu J., ACS Nano, 2018, 12, 12369—12379 |
72 | Stern L. A., Feng L. G., Song F., Hu X. L., Energy Environ. Sci., 2015, 8, 2347—2351 |
73 | Hu F., Zhu S., Chen S., Li Y., Ma L., Wu T., Zhang Y., Wang C., Liu C., Yang X., Song L., Yang X., Xiong Y., Adv. Mater., 2017, 29, 1606570 |
74 | Xu K., Chen P., Li X., Tong Y., Ding H., Wu X., Chu W., Peng Z., Wu C., Xie Y., J. Am. Chem. Soc., 2015, 137, 4119—4125 |
75 | Zhang Y., Ouyang B., Xu J., Jia G., Chen S., Rawat R. S., Fan H. J., Angew. Chem. Int. Ed., 2016, 55, 8670—8674 |
76 | Chen P., Xu K., Fang Z., Tong Y., Wu J., Lu X., Peng X., Ding H., Wu C., Xie Y., Angew. Chem. Int. Ed., 2015, 54, 14710—14714 |
77 | Kim J. H., Kawashima K., Wygant B. R., Mabayoje O., Liu Y., Wang J. H., Mullins C. B., ACS Appl. Energy Mater., 2018, 1, 5145—5150 |
78 | Xing J. N., Li Y., Guo S. W., Jin T., Li H. X., Wang Y. J., Jiao L. F., Electrochim. Acta, 2019, 298, 305—312 |
79 | Xu K., Ding H., Lv H., Chen P., Lu X., Cheng H., Zhou T., Liu S., Wu X., Wu C., Xie Y., Adv. Mater., 2016, 28, 3326—3332 |
80 | Xu C., Paone E., Rodriguez⁃Padron D., Luque R., Mauriello F., Chem. Soc. Rev., 2020, 49, 4273—4306 |
81 | Ma X., Zhang X. Y., Yang M., Xie J. Y., Lv R. Q., Chai Y. M., Dong B., Rare Metals, 2021, 40, 1048—1055 |
82 | Roylance J. J., Kim T. W., Choi K. S., ACS Catal., 2016, 6, 1840—1847 |
83 | Zhou P., Lv X., Tao S., Wu J., Wang H., Wei X., Wang T., Zhou B., Lu Y., Frauenheim T., Fu X., Wang S., Zou Y., Adv. Mater., 2022, 34, e2204089 |
84 | Song H., Yu J., Tang Z., Yang B., Lu S., Adv. Energy Mater., 2022, 12, 2102573 |
85 | Song H., Wu M., Tang Z., Tse J. S., Yang B., Lu S., Angew. Chem. Int. Ed., 2021, 60, 7234—7244 |
86 | Zhang L., Liang J., Yue L., Dong K., Li J., Zhao D., Li Z., Sun S., Luo Y., Liu Q., Cui G., Ali Alshehri A., Guo X., Sun X., Nano Research Energy, 2022, 1, e9120028 |
87 | Shi X. F., Zhu J., Bai T. Y., Fu Z. X., Zhang J. J., Bu X. H., Chem. J. Chinese Universities, 2022, 43(1), 20210613 |
史潇凡, 朱剑, 白田宇, 付子萱, 张冀杰, 卜显和. 高等学校化学学报, 2022, 43(1), 20210613 | |
88 | Zou X., Zhang Y., Chem. Soc. Rev., 2015, 44, 5148—5180 |
89 | Suen N. T., Hung S. F., Quan Q., Zhang N., Xu Y J., Chen H. M., Chem. Soc. Rev., 2017, 46, 337—365 |
90 | Wygant B. R., Kawashima K., Mullins C. B., ACS Energy Lett., 2018, 3, 2956—2966 |
[1] | XU Jianing, BAI Wenjing, LOU Yuhan, YU Haipeng, DOU Shuo. Electrocatalytic Oxidative Cleavage of Lignin: Facile and Efficient Biomass Valorization Strategy [J]. Chem. J. Chinese Universities, 2023, 44(5): 304. |
[2] | LI Chenchen, NA Yong. g-C3N4/CdS/Ni Composite as a Bifunctional Photocatalyst for H2 Generation and 5-Hydroxymethylfurfural Oxidation [J]. Chem. J. Chinese Universities, 2021, 42(9): 2896. |
[3] | KONG Lingzhao,MIAO Gai,LUO Hu,SUN Yuhan. Advances in Hydrothermal Catalysis Conversion of Biomass into Oxygen-containing Chemicals † [J]. Chem. J. Chinese Universities, 2020, 41(1): 11. |
[4] | YIN Wenjing, LIU Xiao, QIAN Huidong, ZOU Zhiqing. Preparation and Oxygen Reduction Performance of Fe, N co-Doped arbon Nanoplate with High Density of Active Sites† [J]. Chem. J. Chinese Universities, 2019, 40(7): 1480. |
[5] | LI Jiahui,QIN Menghan,ZHANG Jie,DU Yi,SUN Dongmei,TANG Yawen. Fabrication of 3D Porous Core-shell PdNi@Au Nanocatalyst for Formic Acid Electro-oxidation† [J]. Chem. J. Chinese Universities, 2019, 40(5): 988. |
[6] | DU Mengmeng,SUN Haijun,GAO Shan,YE Xiaoli,QIAO Lei,GUO Fen. Preparation and Electro-catalytic Property of Self-supported Nickel Nanowire Array Electrode† [J]. Chem. J. Chinese Universities, 2018, 39(12): 2739. |
[7] | XU Li, PAN Guoshun, LIANG Xiaolu, LUO Guihai, Zou Chunli, CHEN Gaopan. N/S Co-doped Non-precious Metal as Non-platinum Cathode Catalyst for Alkaline Membrane Fuel Cells† [J]. Chem. J. Chinese Universities, 2014, 35(5): 1029. |
[8] | DUAN Dong-Hong, ZHANG Zhong-Lin, ZHANG Tao, LIU Shi-Bin*, HAO Xiao-Gang, LI Yi-Bing. Performance of Pt-Ru/C Catalysts Doped with W, Ni and Sn for Electrocatalytic Oxidation of Methanol in Alkaline Media [J]. Chem. J. Chinese Universities, 2011, 32(11): 2618. |
[9] | DU Fang, QI Xin-Hua*, XU Ying-Zhao, ZHUANG Yuan-Yi. Catalytic Conversion of Fructose to 5-Hydroxymethylfurfural by Ion-exchange Resin in Ionic Liquid [J]. Chem. J. Chinese Universities, 2010, 31(3): 548. |
[10] | WANG Xiao-Gang, SU Yi, LIU Chang-Peng, LIAO Jian-Hui, XING Wei*, LU Tian-Hong. Effect of Heat Treatment Temperature on the Catalytic Performances of PtRu/C Catalysts for Methanol Electro-Oxidation [J]. Chem. J. Chinese Universities, 2009, 30(9): 1819. |
[11] | XU Hong1,2, SU Jing1,2, XIAN Xin-Liang1, HUANG Wei-Min1,2, LIN Hai-Bo1,2*. A Kinetics of Indirect Electro-oxidation Reation of NH3-N with Chloride Ion in a Filter-press Type Electrochemical Cell [J]. Chem. J. Chinese Universities, 2008, 29(7): 1416. |
[12] | LIU Shi-Bin, LIU Yong, SUN Yan-Ping*, ZHANG Zhong-Lin, HAO Xiao-Gang, LI Yi-Bing. Performance of Methanol Oxidation on Pt-M(M=Ni, Fe, Mo) Electro-Catalysts in Alkaline Media [J]. Chem. J. Chinese Universities, 2007, 28(5): 940. |
[13] | TIAN Tian1,2, LIU Chang-Peng1, LIAO Jian-Hui1, XING Wei1*, LU Tian-Hong1. Electrochemical Characteristics of Trioxane [J]. Chem. J. Chinese Universities, 2007, 28(12): 2390. |
[14] | ZHANG Cun-Zhong, LIU Zhen, LIN Li-Jun, QI Fei, WU Feng. Selective Electrochemical Synthesis of Ferrate on SnO2-Sb2O3/Ti Electrodes [J]. Chem. J. Chinese Universities, 2005, 26(5): 927. |
[15] | ZHU Zhen-Ping, REN Jian-Guo, QIN Zi-Bin . Studies on Catalytic Electro-oxidation of Hydrazine on Modified Graphite Electrode by Coordination Compounds of d-Transition Metals with TP(ο-NO2)TBP [J]. Chem. J. Chinese Universities, 1993, 14(12): 1710. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||