Chem. J. Chinese Universities ›› 2023, Vol. 44 ›› Issue (5): 20220733.doi: 10.7503/cjcu20220733
• Review • Previous Articles Next Articles
WANG Siyang, JING Wen, CHANG Jiangwei(), LU Siyu(
)
Received:
2022-11-25
Online:
2023-05-10
Published:
2023-01-20
Contact:
CHANG Jiangwei, LU Siyu
E-mail:jwchang2021@zzu.edu.cn;sylu2013@zzu.edu.cn
Supported by:
CLC Number:
TrendMD:
WANG Siyang, JING Wen, CHANG Jiangwei, LU Siyu. Recent Progress on Carbon Dots Preparation and Electrochemical Energy Application[J]. Chem. J. Chinese Universities, 2023, 44(5): 20220733.
1 | Wu H., Lu S., Yang B., Acc. Mater. Res., 2022, 3, 319—330 |
2 | Chang J., Yu C., Song X., Tan X., Ding Y., Zhao Z., Qiu J., Angew. Chem. Int. Ed., 2021, 60, 3587—3595 |
3 | Chang J., Song X., Yu C., Yu J., Ding Y., Yao C., Zhao Z., Qiu J., Adv. Funct., 2020, 30, 2006270 |
4 | Qiu H., Xue M., Shen C., Zhang Z., Guo W., Adv. Mater., 2019, 31, 1803772 |
5 | Kroto H. W., Heath J. R., O’Brien S. C., Curl R. F., Smalley R. E., Nature, 1985, 318, 162—163 |
6 | Geim A. K., Novoselov K. S., Nat. Mater., 2007, 6, 183—191 |
7 | Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A., Science, 2004, 306, 666—669 |
8 | Xu X., Ray R., Gu Y., Ploehn H. J., Gearheart L., Raker K., Scrivens W. A., J. Am. Chem. Soc., 2004, 126, 12736—12737 |
9 | Xia C., Zhu S., Feng T., Yang M., Yang B., Adv. Sci., 2019, 6, 1901316 |
10 | Guo R., Li L., Wang B., Xiang Y., Zou G., Zhu Y., Hou H., Ji X., Energy Storage Materials, 2021, 37, 8—39 |
11 | Cheng Y., Song H., Yu J., Chang J., Waterhouse G. I. N., Tang Z., Yang B., Lu S., Chinese J. Catal., 2022, 43, 2443—2452 |
12 | Ding P., Song H., Chang J., Lu S., Nano Res., 2022, 15, 7063—7070 |
13 | Chang J., Song X., Yu C., Huang H., Hong J., Ding Y., Huang H., Yu J., Tan X., Zhao Z., Qiu J., Nano Energy, 2020, 69, 104377 |
14 | Ai L., Shi R., Yang J., Zhang K., Zhang T., Lu S., Small, 2021, 17, 2007523 |
15 | Wu H., Huang Q., Shi Y., Chang J., Lu S., Nano Res., 2023, https://doi.org/10.1007/s12274⁃023⁃5502⁃8 |
16 | Wang Y. H., Li R. Q., Li H. B., Huang H. L., Guo Z. J., Chen H. Y., Zheng Y., Qu K. G., Rare Metals, 2021, 40, 1040—1047 |
17 | Ma X., Zhang X. Y., Yang M., Xie J. Y., Lv R. Q., Chai Y. M., Dong B., Rare Metals, 2021, 40, 1048—1055 |
18 | Zhu Y. G., Shang C. Q., Wang Z. Y., Zhang J. Q., Yang M. Y., Cheng H., Lu Z. G., Rare Metals, 2021, 40, 90—95 |
19 | Li L., Zhang Z. C., Rare Metals, 2022, 41, 3943—3945 |
20 | Chang J., Yu C., Song X., Han X., Ding Y., Tan X., Li S., Xie Y., Zhao Z., Qiu J., Nano Energy, 2021, 89, 106332 |
21 | Liu J., Liu Y., Liu N., Han Y., Zhang X., Huang H., Lifshitz Y., Lee S. T., Zhong J., Kang Z., Science, 2015, 347, 970—974 |
22 | Guo S., Zhao S., Wu X., Li H., Zhou Y., Zhu C., Yang N., Jiang X., Gao J., Bai L., Liu Y., Lifshitz Y., Lee S. T., Kang Z., Nat. Commun., 2017, 8, 1828 |
23 | Xia C., Qiu Y., Xia Y., Zhu P., King G., Zhang X., Wu Z., Kim J. Y., Cullen D. A., Zheng D., Li P., Shakouri M., Heredia E., Cui P., Alshareef H. N., Hu Y., Wang H., Nat. Chem., 2021, 13, 887—894 |
24 | Li W., Liu Y., Wang B., Song H., Liu Z., Lu S., Yang B., Chinese Chemical Letters, 2019, 30, 2323—2327 |
25 | Liu Y., Li X., Zhang Q., Li W., Xie Y., Liu H., Shang L., Liu Z., Chen Z., Gu L., Tang Z., Zhang T., Lu S., Angew. Chem. Int. Ed., 2020, 59, 1718—1726 |
26 | Li W., Liu Y., Wu M., Feng X., Redfern S. A. T., Shang Y., Yong X., Feng T., Wu K., Liu Z., Li B., Chen Z., Tse J. S., Lu S., Yang B., Adv. Mater., 2018, 30, 1800676 |
27 | Liu J., Li R., Yang B., ACS Cent. Sci., 2020, 6, 2179—2195 |
28 | Brumbaugh J., Schleifenbaum A., Gasch A., Sattler M., Schultz C., J. Am. Chem. Soc., 2006, 128, 24—25 |
29 | Zhou J., Booker C., Li R., Zhou X., Sham T. K., Sun X., Ding Z., J. Am. Chem. Soc., 2007, 129, 744—745 |
30 | Peng J., Gao W., Gupta B. K., Liu Z., Romero⁃Aburto R., Ge L., Song L., Alemany L. B., Zhan X., Gao G., Vithayathil S. A., Kaipparettu B. A., Marti A. A., Hayashi T., Zhu J. J., Ajayan P. M., Nano Lett., 2012, 12, 844—849 |
31 | Hu S., Liu J., Yang J., Wang Y., Cao S., J. Nanopart. Res., 2011, 13, 7247—7252 |
32 | Cui L., Ren X., Wang J., Sun M., Materials Today Nano, 2020, 12, 100091 |
33 | Chao⁃Mujica F. J., Garcia⁃Hernández L., Camacho⁃López S., Camacho⁃López M., Camacho⁃López M. A., Reyes Contreras D., Pérez⁃Rodríguez A., Peña⁃Caravaca J. P., Páez⁃Rodríguez A., Darias⁃Gonzalez J. G., Hernandez⁃Tabares L., Arias de Fuentes O., Prokhorov E., Torres⁃Figueredo N., Reguera E., Desdin⁃García L. F., J. Appl. Phys., 2021, 129, 163301 |
34 | Zhu S., Meng Q., Wang L., Zhang J., Song Y., Jin H., Zhang K., Sun H., Wang H., Yang B., Angew. Chem., 2013, 125, 4045—4049 |
35 | Liao H., Ran Y., Zhong J., Li J., Li M., Yang H., Environ. Res., 2022, 215, 114366 |
36 | Medeiros T. V. de., Manioudakis J., Noun F., Macairan J. R., Victoria F., Naccache R., J. Mater. Chem. C, 2019, 7, 7175—7195 |
37 | Jiang L., Ding H., Lu S., Geng T., Xiao G., Zou B., Bi H., Angew. Chem. Int. Ed., 2020, 59, 9986—9991 |
38 | Yadov R. M., Li Z., Zhang T., Sahin O., Roy S., Gao G., Guo H., Vajtai R., Wang L., Ajayan P. M., Wu J., Adv. Mater., 2022, 34, 2105690 |
39 | Tam T. V., Kang S. G., Babu K. F., Oh E. S., Lee S. G., Choi W. M., J. Mater. Chem. A, 2017, 5, 10537—10543 |
40 | Hu C., Yu C., Li M., Wang X., Dong Q., Wang G., Qiu J., Chem. Commun., 2015, 51, 3419—3422 |
41 | Wu J., Ma S., Sun J., Gold J. I., Tiwary C., Kim B., Zhu L., Chopra N., Odeh I. N., Vajtai R., Yu A. Z., Luo R., Lou J., Ding G., Kenis P. J. A., Ajayan P. M., Nat. Commun., 2016, 7, 13869 |
42 | Tian J., Chen J., Liu J., Tian Q., Chen P., Nano Energy, 2018, 48, 284—291 |
43 | Yu J., Song H., Li X., Tang L., Tang Z., Yang B., Lu S., Adv. Funct., 2021, 31, 2107196 |
44 | Liu Y., Yang Y., Peng Z., Liu Z., Chen Z., Shang L., Lu S., Zhang T., Nano Energy, 2019, 65, 104023 |
45 | Feng T., Yu G., Tao S., Zhu S., Ku R., Zhang R., Zeng Q., Yang M., Chen Y., Chen W., Chen W., Yang B., J. Mater. Chem. A, 2020, 8, 9638—9645 |
46 | Pham N. N. T., Park J. S., Kim H. T., Kim H. J., Son Y. A., Kang S. G., Lee S. G., New J. Chem., 2018, 43, 348—355 |
47 | Zhu S., Song Y., Wang J., Wan H., Zhang Y., Ning Y., Yang B., Nano Today, 2017, 13, 10—14 |
48 | Tang C., Zhang Q., Adv. Mater., 2017, 29, 1604103 |
49 | Liu W. W., Feng Y. Q., Yan X. B., Chen J. T., Xue Q. J., Adv. Funct., 2013, 23, 4111—4122 |
50 | Duan J., Chen S., Jaroniec M., Qiao S. Z., ACS Catal., 2015, 5, 5207—5234 |
51 | Fang L., Jiang Z., Xu H., Liu L., Guan Y., Gu X., Wang Y., J. Catal., 2018, 357, 238—246 |
52 | Wu X., Zhao J., Guo S., Wang L., Shi W., Huang H., Liu Y., Kang Z., Nanoscale, 2016, 8, 17314—17321 |
53 | Pei Y., Cheng Y., Chen J., Smith W., Dong P., Ajayan P. M., Ye M., Shen J., J. Mater. Chem. A, 2018, 6, 23220—23243 |
54 | Wan C., Regmi Y. N., Leonard B. M., Angew. Chem. Int. Ed., 2014, 53, 6407—6410 |
55 | Park H., Encinas A., Scheifers J. P., Zhang Y., Fokwa B. P. T., Angew. Chem. Int. Ed., 2017, 56, 5575—5578 |
56 | Hu C., Dai Q., Dai L., Cell Reports Physical Science, 2021, 2, 100328 |
57 | Wang X., Vasileff A., Jiao Y., Zheng Y., Qiao S. Z., Adv. Mater., 2019, 31, 1803625 |
58 | Song L., Zhang X., Zhu S., Xu Y., Wang Y., Carbon, 2022, 199, 63—69 |
59 | Wang L., Wu X., Guo S., Han M., Zhou Y., Sun Y., Huang H., Liu Y., Kang Z., J. Mater. Chem. A, 2017, 5, 2717—2723 |
60 | Liu Z., Li B., Feng Y., Jia D., Li C., Zhou Y., Small Methods, 2022, 6, 2200637 |
61 | Liu Z., Li B., Feng Y., Jia D., Li C., Sun Q., Zhou Y., Small, 2021, 17, 2102496 |
62 | Walter M. G., Warren E. L., McKone J. R., Boettcher S. W., Mi Q., Santori E. A., Lewis N. S., Chem. Rev., 2010, 110, 6446—6473 |
63 | Huang C., Ouyang T., Zou Y., Li N., Liu Z. Q., J. Mater. Chem. A, 2018, 6, 7420—7427 |
64 | Wei G., He J., Zhang W., Zhao X., Qiu S., An C., Inorg. Chem., 2018, 57, 7380—7389 |
65 | Muthurasu A., Sheen Mers S. V., Ganesh V., International Journal of Hydrogen Energy, 2018, 43, 4726—4737 |
66 | Datta A., Kapri S., Bhattacharyya S., J. Mater. Chem. A, 2016, 4, 14614—14624 |
67 | Zhao M., Zhang J., Xiao H., Hu T., Jia J., Wu H., Chem. Commun., 2019, 55, 1635—1638 |
68 | Huang D., Chen Y., Cheng M., Lei L., Chen S., Wang W., Liu X., Small, 2021, 17, 2002998 |
69 | Wang M., Fang Z., Zhang K., Fang J., Qin F., Zhang Z., Li J., Liu Y., Lai Y., Nanoscale, 2016, 8, 11398—11402 |
70 | Li Y., Zhao Y., Cheng H., Hu Y., Shi G., Dai L., Qu L., J. Am. Chem. Soc., 2012, 134, 15—18 |
71 | Zhang P., Wei J. S., Chen X. B., Xiong H. M., J. Colloid. Interf. Sci., 2019, 537, 716—724 |
72 | Cheng R., Jiang M., Li K., Guo M., Zhang J., Ren J., Meng P., Li R., Fu C., Chemical Engineering Journal, 2021, 425, 130603 |
73 | Wu J., Wen C., Zou X., Jimenez J., Sun J., Xia Y., Fonseca Rodrigues M. T., Vinod S., Zhong J., Chopra N., Odeh I. N., Ding G., Lauterbach J., Ajayan P. M., ACS Catal., 2017, 7, 4497—4503 |
74 | Zou X., Liu M., Wu J., Ajayan P. M., Li J., Liu B., Yakobson B. I., ACS Catal., 2017, 7, 6245—6250 |
75 | Chen C., Yan X., Liu S., Wu Y., Wan Q., Sun X., Zhu Q., Liu H., Ma J., Zheng L., Wu H., Han B., Angew. Chem. Int. Ed., 2020, 59, 16459—16464 |
76 | Fu J., Wang Y., Liu J., Huang K., Chen Y., Li Y., Zhu J. J., ACS Energy Lett., 2018, 3, 946—951 |
77 | Zheng S., Wu Z. S., Wang S., Xiao H., Zhou F., Sun C., Bao X., Cheng H. M., Energy Storage Materials, 2017, 6, 70—97 |
78 | Li Z., Cao L., Qin P., Liu X., Chen Z., Wang L., Pan D., Wu M., Carbon, 2018, 139, 67—75 |
79 | Wei J. S., Ding C., Zhang P., Ding H., Niu X. Q., Ma Y. Y., Li C., Wang Y. G., Xiong H. M., Adv. Mater., 2019, 31, 1806197 |
80 | Zhang X., Zhang Z., Hu F., Li D., Zhou D., Jing P., Du F., Qu S., ACS Sustainable Chem. Eng., 2019, 7, 9848—9856 |
81 | Jing M., Wang J., Hou H., Yang Y., Zhang Y., Pan C., Chen J., Zhu Y., Ji X., J. Mater. Chem. A, 2015, 3, 16824—16830 |
82 | Kong L. J., Yang Y. Q., Li R. Y., Li Z. J., Electronchimica Acta, 2016, 198, 144—155 |
83 | Liu Z., Zhang L., Sheng L., Zhou Q., Wei T., Feng J., Fan Z., Advanced Energy Materials, 2018, 8, 1802042 |
84 | Li L., Li Y., Ye Y., Guo R., Wang A., Zou G., Hou H., Ji X., ACS Nano, 2021, 15, 6872—6885 |
85 | Zhang E., Jia X., Wang B., Wang J., Yu X., Lu B., Advanced Science, 2020, 7, 2000470 |
[1] | DENG Yuan, WANG Si, FENG Haisong, ZHANG Xin. Theoretical Calculation of Solvent Dependence in Pd-catalyzed Hydrogenation of Furfural [J]. Chem. J. Chinese Universities, 2023, 44(2): 20220486. |
[2] | FU Fangmei, XU Mengru, LIANG Zishan, HUANG Sirui, LI Hui, ZHANG Haoran, LI Wei, ZHENG Mingtao, LEI Bingfu. Conjugate Size and Surface Oxidation Synergistically Trigger Red Fluorescence in Carbon Dots for Detecting Trace Water in Organic Solvents [J]. Chem. J. Chinese Universities, 2023, 44(2): 20220464. |
[3] | GUO Cheng, ZHANG Wei, TANG Yun. Ordered Mesoporous Materials: History, Progress and Perspective [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220167. |
[4] | LI Yidi, TIAN Xiaochun, LI Junpeng, CHEN Lixiang, ZHAO Feng. Electron Transfer on the Semiconductor-microbe Interface and Its Environmental Application [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220089. |
[5] | ZHOU Ying, HE Peinan, FENG Haisong, ZHANG Xin. Optimal Distribution of Active Sites of CO2 Reduction Reaction Catalyzed by Diatomic Site M-N-C [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210640. |
[6] | YUAN Chunling, YAO Xiaotiao, XU Yuanjin, QIN Xiu, SHI Rui, CHENG Shiqi, WANG Yilin. Colorimetry/Ratio Fluorimetry Determination of Glucose with Bifunctional Carbon Dots [J]. Chem. J. Chinese Universities, 2021, 42(8): 2428. |
[7] | DING Hui, ZHOU Xuanxuan, ZHANG Zihui, XIA Kunlin, ZHAO Yunpeng. Solvent-free and High-yielding Synthesis of Highly Efficient Red-emitting Carbon Dots and Their Application in White Light Devices [J]. Chem. J. Chinese Universities, 2021, 42(6): 2080. |
[8] | MA Yanrong, JIANG Shengnan, JIN Yan. Sensitive and Electrochemical Detection of Telomerase Activity Based on the Signal Amplification of Strand Displacement Reaction [J]. Chem. J. Chinese Universities, 2021, 42(3): 745. |
[9] | YANG Pengfei, SHI Yuping, ZHANG Yanfeng. Large-scale Syntheses and Versatile Applications of Two-dimensional Metal Dichalcogenides [J]. Chem. J. Chinese Universities, 2021, 42(2): 504. |
[10] | SUN Haizhu, YANG Guoduo, YANG Bai. Synthesis, Structure Control and Applications of Carbon Dots [J]. Chem. J. Chinese Universities, 2021, 42(2): 349. |
[11] | XUE Yarong, LI Hongwei, WU Yuqing. Carbon Dots Based-on Polyethyleneimines as a Ratiometric Fluorescent Sensor of Morin† [J]. Chem. J. Chinese Universities, 2020, 41(7): 1531. |
[12] | HAN Juntian,CUI Yaoxing,SU Zhijun,WU Yi,CHEN Liuping,XU Junhui. Two-Electron Storage Viologen for Aqueous Organic Redox Flow Batteries [J]. Chem. J. Chinese Universities, 2020, 41(5): 1035. |
[13] | LIU Lu,WU Hanyue,LI Jing,SHE Lan. Tuning Microstructures of Iron-Nickel Alloy Catalysts for Efficient Oxygen Evolution Reaction [J]. Chem. J. Chinese Universities, 2020, 41(5): 1083. |
[14] | HAN Fangjie, DAI Mengjiao, LIANG Zhishan, SONG Zhongqian, HAN Dongxue, NIU Li. Research Progress of Photoelectrochemical Technology Applied in Antioxidant Analysis † [J]. Chem. J. Chinese Universities, 2020, 41(4): 591. |
[15] | FAN Hui, JIN Baokang. Investigation on Electrochemical Capture of CO2 by Quinone Derivatives Based on in situ FTIR Spectroelectrochemistry † [J]. Chem. J. Chinese Universities, 2019, 40(9): 1847. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||