Chem. J. Chinese Universities ›› 2022, Vol. 43 ›› Issue (12): 20220572.doi: 10.7503/cjcu20220572
• Review • Previous Articles Next Articles
ZHAO Xueqi1,2, ZHAO Yue2, XUE Jing2, BAI Min2, CHEN Feng2, SUN Ying1, SONG Daqian1(), ZHAO Yongxi2(
)
Received:
2022-08-29
Online:
2022-12-10
Published:
2022-10-25
Contact:
SONG Daqian, ZHAO Yongxi
E-mail:songdq@jlu.edu.cn;yxzhao@mail.xjtu.edu.cn
Supported by:
CLC Number:
TrendMD:
ZHAO Xueqi, ZHAO Yue, XUE Jing, BAI Min, CHEN Feng, SUN Ying, SONG Daqian, ZHAO Yongxi. Nucleic Acids-encoded Amplification for Single-cell Imaging[J]. Chem. J. Chinese Universities, 2022, 43(12): 20220572.
Method | Principle | Nucleic acid amplification | Target | Encoding number | Ref. |
---|---|---|---|---|---|
MERFISH | Hybridization reaction | None | mRNA | 100—1000 | [ |
Improved MERFISH | Hybridization reaction | bDNA | mRNA | 130 | [ |
SeqFISH | Hybridization reaction | None | mRNA | 12 per cycle | [ |
HCR⁃seqFISH | Hybridization reaction | smHCR | mRNA | 250 | [ |
STARmap | Hybridization reaction | RCA | mRNA | 160—1020 | [ |
SABER⁃FISH | Hybridization reaction | PER | mRNA | 17 per cycle | [ |
SeqEA | Hybridization reaction | RCA | mRNA | 36 per cycle | [ |
Clicker⁃FISH | Coupling reaction | RCA | RNA structures and polyadenylation | 3 per cycle | [ |
Sc5hmU/5hmC⁃microgel | Coupling reaction | RCA | 5hmU and 5hmC | 2 per cycle | [ |
CODEX | Antigen⁃antibody reaction | None | Proteins | 2 per cycle | [ |
IsHCR | Antigen⁃antibody reaction | HCR | Proteins | 3 per cycle | [ |
ELISpot | Antigen⁃antibody reaction | PER | Proteins | 6 per cycle | [ |
CCFB | Antigen⁃antibody reaction | None | Proteins | 3 per cycle | [ |
Cell⁃TALKING | Combinational reaction | RCA | 5hmC, 5hmU and 5fU | 3 per cycle | [ |
ClampFISH | Combinational reaction | Click⁃amplifying | mRNA | 3 per cycle | [ |
Table 1 Properties of in situ nucleic acids-encoded amplification methods
Method | Principle | Nucleic acid amplification | Target | Encoding number | Ref. |
---|---|---|---|---|---|
MERFISH | Hybridization reaction | None | mRNA | 100—1000 | [ |
Improved MERFISH | Hybridization reaction | bDNA | mRNA | 130 | [ |
SeqFISH | Hybridization reaction | None | mRNA | 12 per cycle | [ |
HCR⁃seqFISH | Hybridization reaction | smHCR | mRNA | 250 | [ |
STARmap | Hybridization reaction | RCA | mRNA | 160—1020 | [ |
SABER⁃FISH | Hybridization reaction | PER | mRNA | 17 per cycle | [ |
SeqEA | Hybridization reaction | RCA | mRNA | 36 per cycle | [ |
Clicker⁃FISH | Coupling reaction | RCA | RNA structures and polyadenylation | 3 per cycle | [ |
Sc5hmU/5hmC⁃microgel | Coupling reaction | RCA | 5hmU and 5hmC | 2 per cycle | [ |
CODEX | Antigen⁃antibody reaction | None | Proteins | 2 per cycle | [ |
IsHCR | Antigen⁃antibody reaction | HCR | Proteins | 3 per cycle | [ |
ELISpot | Antigen⁃antibody reaction | PER | Proteins | 6 per cycle | [ |
CCFB | Antigen⁃antibody reaction | None | Proteins | 3 per cycle | [ |
Cell⁃TALKING | Combinational reaction | RCA | 5hmC, 5hmU and 5fU | 3 per cycle | [ |
ClampFISH | Combinational reaction | Click⁃amplifying | mRNA | 3 per cycle | [ |
1 | Allam M., Cai S., Coskun A. F., NPJ Precis. Oncol., 2020, 4, 11 |
2 | Jia Y. M., Lou X. D., Xia F., Chinese J. Anal. Chem., 2018, 46(9), 1329—1338 |
贾永梅, 娄筱叮, 夏帆. 分析化学, 2018, 46(9), 1329—1338 | |
3 | Schwartzman O., Tanay A., Nat. Rev. Genet., 2015, 16(12), 716—726 |
4 | Noureen N., Wu S., Lv Y., Yang J., Alfred Yung W. K., Gelfond J., Wang X., Koul D., Ludlow A., Zheng S., Nat. Commun., 2021, 12(1), 139 |
5 | Sungkaworn T., Jobin M. L., Burnecki K., Weron A., Lohse M. J., Calebiro D., Nature, 2017, 550(7677), 543—547 |
6 | Ma Y., Wang M., Li W., Zhang Z., Zhang X., Tan T., Zhang X. E., Cui Z., Nat. Commun., 2017, 8(1), 15318 |
7 | Saito K., Chang Y. F., Horikawa K., Hatsugai N., Higuchi Y., Hashida M., Yoshida Y., Matsuda T., Arai Y., Nagai T., Nat. Commun., 2012, 3(1), 1262 |
8 | Liu Y., Lu Y., Yang X., Zheng X., Wen S., Wang F., Vidal X., Zhao J., Liu D., Zhou Z., Ma C., Zhou J., Piper J. A., Xi P., Jin D., Nature, 2017, 543(7644), 229—233 |
9 | Grimm J. B., English B. P., Chen J., Slaughter J. P., Zhang Z., Revyakin A., Patel R., Macklin J. J., Normanno D., Singer R. H., Lionnet T., Lavis L. D., Nat. Methods, 2015, 12(3), 244—250 |
10 | Ebrahimi S. B., Samanta D., Mirkin C. A., J. Am. Chem. Soc., 2020, 142(26), 11343—11356 |
11 | Luo F., Qin G., Xia T., Fang X., Annu. Rev. Anal. Chem.(Palo. Alto. Calif.), 2020, 13(1), 337—361 |
12 | Su X., Xiao X., Zhang C., Zhao M., Appl. Spectrosc., 2012, 66(11), 1249—1261 |
13 | Cao X., Yu H., Xue J., Bai M., Zhao Y., Li Y., Zhao Y., Chen F., Anal. Chem., 2020, 92(13), 9356—9361 |
14 | Qin P., Parlak M., Kuscu C., Bandaria J., Mir M., Szlachta K., Singh R., Darzacq X., Yildiz A., Adli M., Nat. Commun., 2017, 8(1), 14725 |
15 | Brenner S., Lerner R. A., Proceedings of the National Academy of Sciences, 1992, 89(12), 5381—5383 |
16 | Clark M. A., Acharya R. A., Arico⁃Muendel C. C., Belyanskaya S. L., Benjamin D. R., Carlson N. R., Centrella P. A., Chiu C. H., Creaser S. P., Cuozzo J. W., Davie C. P., Ding Y., Franklin G. J., Franzen K. D., Gefter M. L., Hale S. P., Hansen N. J. V., Israel D. I., Jiang J., Kavarana M. J., Kelley M. S., Kollmann C. S., Li F., Lind K., Mataruse S., Medeiros P. F., Messer J. A., Myers P., O'keefe H., Oliff M. C., Rise C. E., Satz A. L., Skinner S. R., Svendsen J. L., Tang L., van Vloten K., Wagner R. W., Yao G., Zhao B., Morgan B. A., Nat. Chem. Biol., 2009, 5(9), 647—654 |
17 | Cai B., Kim D., Akhand S., Sun Y., Cassell R. J., Alpsoy A., Dykhuizen E. C., van Rijn R. M., Wendt M. K., Krusemark C. J., J. Am. Chem. Soc., 2019, 141(43), 17057—17061 |
18 | Ståhl P. L., Salmén F., Vickovic S., Lundmark A., Navarro J. F., Magnusson J., Giacomello S., Asp M., Westholm J. O., Huss M., Mollbrink A., Linnarsson S., Codeluppi S., Borg Å., Pontén F., Costea P. I., Sahlén P., Mulder J., Bergmann O., Lundeberg J., Frisén J., Science, 2016, 353(6294), 78—82 |
19 | Boettiger A. N., Bintu B., Moffitt J. R., Wang S., Beliveau B. J., Fudenberg G., Imakaev M., Mirny L. A., Wu C. T., Zhuang X., Nature, 2016, 529(7586), 418—422 |
20 | Zhuang X., Nat. Methods, 2021, 18(1), 18—22 |
21 | Kress W. J., Erickson D. L., Proceed. Nat. Acad. Sciences, 2008, 105(8), 2761—2762 |
22 | Chen F., Bai M., Cao X., Xue J., Zhao Y., Wu N., Wang L., Zhang D., Zhao Y., Nat. Commun., 2021, 12(1), 1965 |
23 | Chen F., Xue J., Zhang J., Bai M., Yu X., Fan C., Zhao Y., J. Am. Chem. Soc., 2020, 142(6), 2889—2896 |
24 | Abramson R. D., Myers T. W., Curr. Opin. Biotechnol., 1993, 4(1), 41—47 |
25 | Zhao Y., Chen F., Li Q., Wang L., Fan C., Chem. Rev., 2015, 115(22), 12491—12545 |
26 | Kishi J. Y., Schaus T. E., Gopalkrishnan N., Xuan F., Yin P., Nat. Chem., 2018, 10(2), 155—164 |
27 | Zhou W., Li D., Yuan R., Xiang Y., Anal. Chem., 2019, 91(5), 3628—3635 |
28 | Friedrich M. W., Curr. Opin. Biotechnol., 2006, 17(1), 59—66 |
29 | Sahagun⁃Ruiz A., Waghela S. D., Holman P. J., Chieves L. P., Wagner G. G., Veter. Parasit., 1997, 73(1), 53—63 |
30 | Chen S. X., Zhang D. Y., Seelig G., Nat. Chem., 2013, 5(9), 782—789 |
31 | Kishi J. Y., Beliveau B. J., Lapan S. W., West E. R., Zhu A., Sasaki H. M., Saka S. K., Wang Y., Cepko C. L., Yin P., bioRxiv, 2018, 401810 |
32 | Takei Y., Yun J., Zheng S., Ollikainen N., Pierson N., White J., Shah S., Thomassie J., Suo S., Eng C. H. L., Guttman M., Yuan G. C., Cai L., Nature, 2021, 590(7845), 344—350 |
33 | Crosetto N., Bienko M., van Oudenaarden A., Nat. Rev. Genet., 2015, 16(1), 57—66 |
34 | Femino A. M., Fay F. S., Fogarty K., Singer R. H., Science, 1998, 280(5363), 585—590 |
35 | Fan Y., Braut S. A., Lin Q., Singer R. H., Skoultchi A. I., Genomics, 2001, 71(1), 66—69 |
36 | Lubeck E., Cai L., Nat. Methods, 2012, 9(7), 743—748 |
37 | Chen K. H., Boettiger A. N., Moffitt J. R., Wang S., Zhuang X., Science, 2015, 348(6233), aaa6090 |
38 | Moffitt J. R., Hao J., Bambah⁃Mukku D., Lu T., Dulac C., Zhuang X., Proc. Nat. Acad. Sci. USA, 2016, 113(50), 14456—14461 |
39 | Emanuel G., Moffitt J. R., Zhuang X., Nat. Methods, 2017, 14(12), 1159—1162 |
40 | Zhang M., Eichhorn S. W., Zingg B., Yao Z., Cotter K., Zeng H., Dong H., Zhuang X., Nature, 2021, 598(7879), 137—143 |
41 | Xia C., Babcock H. P., Moffitt J. R., Zhuang X., Scientific Reports, 2019, 9(1), 7721 |
42 | Lubeck E., Coskun A. F., Zhiyentayev T., Ahmad M., Cai L., Nat. Methods, 2014, 11(4), 360—361 |
43 | Shah S., Lubeck E., Zhou W., Cai L., Neuron, 2016, 92(2), 342—357 |
44 | Wang X., Allen W. E., Wright M. A., Sylwestrak E. L., Samusik N., Vesuna S., Evans K., Liu C., Ramakrishnan C., Liu J., Nolan G. P., Bava F. A., Deisseroth K., Science, 2018, 361(6400), eaat5691 |
45 | Kishi J. Y., Lapan S. W., Beliveau B. J., West E. R., Zhu A., Sasaki H. M., Saka S. K., Wang Y., Cepko C. L., Yin P., Nat. Methods, 2019, 16(6), 533—544 |
46 | Deng R., Zhang K., Wang L., Ren X., Sun Y., Li J., Chem., 2018, 4(6), 1373—1386 |
47 | Kleiner R. E., Dumelin C. E., Liu D. R., Chem. Soc. Rev., 2011, 40(12), 5707—5717 |
48 | Neri D., Lerner R. A., Annu. Rev. Biochem., 2018, 87(1), 479—502 |
49 | Rouhanifard S. H., Mellis I. A., Dunagin M., Bayatpour S., Jiang C. L., Dardani I., Symmons O., Emert B., Torre E., Cote A., Sullivan A., Stamatoyannopoulos J. A., Raj A., Nat. Biotechnol., 2019, 37(1), 84—89 |
50 | Besanceney⁃Webler C., Jiang H., Zheng T., Feng L., Soriano Del Amo D., Wang W., Klivansky L. M., Marlow F. L., Liu Y., Wu P., Angew. Chem. Int. Ed., 2011, 50(35), 8051—8056 |
51 | Cañeque T., Müller S., Rodriguez R., Nat. Rev. Chem., 2018, 2(9), 202—215 |
52 | Raulf A., Spahn C. K., Zessin P. J. M., Finan K., Bernhardt S., Heckel A., Heilemann M., RSC Adv., 2014, 4(57), 30462—30466 |
53 | Chen F., Bai M., Cao X., Zhao Y., Xue J., Zhao Y., Nucleic Acids Res., 2019, 47(22), e145 |
54 | Bai M., Cao X., Chen F., Xue J., Zhao Y., Zhao Y., Anal. Chem., 2021, 93(30), 10495—10501 |
55 | Agasti S. S., Liong M., Peterson V. M., Lee H., Weissleder R., J. Am. Chem. Soc., 2012, 134(45), 18499—18502 |
56 | Agasti S. S., Wang Y., Schueder F., Sukumar A., Jungmann R., Yin P., Chem. Sci., 2017, 8(4), 3080—3091 |
57 | Wang Y., Woehrstein J. B., Donoghue N., Dai M., Avendaño M. S., Schackmann R. C. J., Zoeller J. J., Wang S. S. H., Tillberg P. W., Park D., Lapan S. W., Boyden E. S., Brugge J. S., Kaeser P. S., Church G. M., Agasti S. S., Jungmann R., Yin P., Nano Letters, 2017, 17(10), 6131—6139 |
58 | Goltsev Y., Samusik N., Kennedy⁃Darling J., Bhate S., Hale M., Vazquez G., Black S., Nolan G. P., Cell, 2018, 174(4), 968— 981(e15) |
59 | Lin R., Feng Q., Li P., Zhou P., Wang R., Liu Z., Wang Z., Qi X., Tang N., Shao F., Luo M., Nat. Methods, 2018, 15(4), 275—278 |
60 | Ma J., Peng Z., Ma L., Diao L., Shao X., Zhao Z., Liu L., Zhang L., Huang C., Liu M., Anal. Chem., 2022, 94(24), 8704—8714 |
61 | Makino K., Susaki E. A., Endo M., Asanuma H., Kashida H., J. Am. Chem. Soc., 2022, 144(4), 1572—1579 |
62 | Murayama K., Kamiya Y., Kashida H., Asanuma H., ChemBioChem, 2015, 16(9), 1298—1301 |
63 | Xue J., Chen F., Su L., Cao X., Bai M., Zhao Y., Fan C., Zhao Y., Angew. Chem. Int. Ed., 2021, 60(7), 3428—3432 |
64 | Zhang K., Deng R., Teng X., Li Y., Sun Y., Ren X., Li J., J. Am. Chem. Soc., 2018, 140(36), 11293—11301 |
65 | Hattori N., Niwa T., Kimura K., Helin K., Ushijima T., Nucleic Acids Res., 2013, 41(15), 7231—7239 |
66 | Xue J., Chen F., Bai M., Cao X., Huang P., Zhao Y., Anal. Chem., 2019, 91(7), 4696—4701 |
67 | Zhang J., Zhao P., Li W., Ye L., Li L., Li Z., Li M., Angew. Chem. Int. Ed., 2022, 61(22), e202117562 |
68 | Wang Z., Niu J., Zhao C., Wang X., Ren J., Qu X., Angew. Chem. Int. Ed., 2021, 60(22), 12431—12437 |
69 | Bai M., Chen F., Cao X., Zhao Y., Xue J., Yu X., Fan C., Zhao Y., Angew. Chem. Int. Ed., 2020, 59(32), 13267—13272 |
70 | Kang J. H., Jang W. Y., Ko Y. T., Pharm. Res., 2017, 34(4), 704—717 |
71 | Sun L., Gao Y., Wang Y., Wei Q., Shi J., Chen N., Li D., Fan C., Chem. Sci., 2018, 9(27), 5967—5975 |
72 | St. Martin A., Salamango D., Serebrenik A., Shaban N., Brown W. L., Donati F., Munagala U., Conticello S. G., Harris R. S., Nucleic Acids Res., 2018, 46(14), e84 |
73 | Stewart J. A., Schauer G., Bhagwat A. S., Nucleic Acids Res., 2020, 48(20), e118 |
74 | Schweissthal B., Brunken K., Brach J., Emde L., Hetsch F., Fricke S., Meier J. C., bioRxiv, 2021, 2021.03.03.433736 |
75 | Wang J., Yu S., Wu Q., Gong X., He S., Shang J., Liu X., Wang F., Angew. Chem. Int. Ed., 2021, 60(19), 10766—10774 |
76 | Wei J., Wang H., Wu Q., Gong X., Ma K., Liu X., Wang F., Angew. Chem. Int. Ed., 2020, 59(15), 5965—5971 |
77 | Liu C., Chen Y., Zhao J., Wang Y., Shao Y., Gu Z., Li L., Zhao Y., Angew. Chem. Int. Ed., 2021, 60(26), 14324—14328 |
78 | Meng X., Zhang K., Dai W., Cao Y., Yang F., Dong H., Zhang X., Chem. Sci., 2018, 9(37), 7419—7425 |
79 | Yuan P., Mao X., Liew S. S., Wu S., Huang Y., Li L., Yao S. Q., ACS Appl. Mater. Interfaces, 2020, 12(52), 57695—57709 |
80 | Zhou W., Li D., Xiong C., Yuan R., Xiang Y., ACS Appl. Mater. Interfaces, 2016, 8(21), 13303—13308 |
81 | Yang F., Cheng Y., Zhang Y., Wei W., Dong H., Lu H., Zhang X., Anal. Chem., 2020, 92(6), 4411—4418 |
82 | Lu H., Guo K., Cao Y., Yang F., Wang D., Dou L., Liu Y., Dong H., Anal. Chem., 2020, 92(2), 1850—1855 |
83 | Ma H., Tu L. C., Naseri A., Huisman M., Zhang S., Grunwald D., Pederson T., Nat. Biotechnol., 2016, 34(5), 528—530 |
84 | Ma H., Tu L. C., Naseri A., Chung Y. C., Grunwald D., Zhang S., Pederson T., Nat. Methods, 2018, 15(11), 928—931 |
85 | Askary A., Sanchez⁃Guardado L., Linton J. M., Chadly D. M., Budde M. W., Cai L., Lois C., Elowitz M. B., Nat. Biotechnol., 2020, 38(1), 66—75 |
86 | Frieda K. L., Linton J. M., Hormoz S., Choi J., Chow K. H. K., Singer Z. S., Budde M. W., Elowitz M. B., Cai L., Nature, 2017, 541(7635), 107—111 |
87 | Takei Y., Shah S., Harvey S., Qi L. S., Cai L., Biophys. J., 2017, 112(9), 1773—1776 |
[1] | CHANG Tonghang, CHENG Zhen. Research Progress of Organic Small Molecule Theranostic Probes Integrating Fluorescence Imaging and Chemotherapy [J]. Chem. J. Chinese Universities, 2022, 43(12): 20220430. |
[2] | MA Xiaofei, HU Shan, LI Junbin, YANG Sheng, CHEN Weiju, QING Zhihe, ZHOU Yibo, YANG Ronghua. Cellular Endogenous Molecule-assisted Fluorescence Signal Amplification Strategy and the Application of Cell Imaging [J]. Chem. J. Chinese Universities, 2022, 43(12): 20220320. |
[3] | CHEN Shangyu, SHEN Qingming, SUN Pengfei, FAN Quli. Small-molecule-based Thermosensitive Polymer Nanoparticles for NIR-Ⅱ Fluorescence Imaging and Photothermal Therapy [J]. Chem. J. Chinese Universities, 2022, 43(12): 20220392. |
[4] | ZHANG Qian, LIU Yawei, WANG Fan, LIU Kai, ZHANG Hongjie. High-resolution in vivo Imaging, Diagnosis and Treatment Applications of Rare-earth-based Nanomaterials [J]. Chem. J. Chinese Universities, 2022, 43(12): 20220552. |
[5] | WANG Shiqi, LUO Bowen, YU Jicheng, GU Zhen. Near-infrared-Ⅱ Fluorescence Imaging for Tumor Diagnosis and Therapy [J]. Chem. J. Chinese Universities, 2022, 43(12): 20220577. |
[6] | LIU Miao, LIU Ruibo, LIU Badi, QIAN Ying. Synthesis, Two-photon Fluorescence Imaging and Photodynamic Therapy of Lysosome-targeted Indole-BODIPY Photosensitizer [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220326. |
[7] | CHEN Hongda, ZHANG Hua, WANG Zhenxin. Development of Small Animals in vivo Fluorescence-photothermal Dual Mode Imaging System [J]. Chem. J. Chinese Universities, 2021, 42(3): 725. |
[8] | BAI Cuiting, YUE Renye, LUO Liegao, MA Nan. Quantitative Analysis of MicroRNA Content by Fluorescence Imaging in Cancer Cells Using Dual-color Fluorescence Nanosensor [J]. Chem. J. Chinese Universities, 2020, 41(6): 1252. |
[9] | LIANG Yuxin, ZHAO Rong, LIANG Xinyue, FANG Xiaohong. Single-molecule Imaging and Analysis of Signal Transduction Proteins on Cell Membranes [J]. Chem. J. Chinese Universities, 2020, 41(6): 1127. |
[10] | SHAO Wei, LEE Jiyoung, LI Fangyuan, LING Daishun. Organic Small Molecule Nanoparticles for Phototheranostics [J]. Chem. J. Chinese Universities, 2020, 41(11): 2356. |
[11] | Yong ZHANG,Cheng SHEN,Zhirong XING,Guiqi CHEN,Zi LU,Zhibing HOU,Xuemei CHEN. Benzimidazole-Derived Fluorescence Enhancement Probe for Visual Detection of HClO † [J]. Chem. J. Chinese Universities, 2019, 40(12): 2480. |
[12] | ZHANG Tao, TANG Yongjia, XU Liang, LIU Keliang. Synthesis of a New Cyanoacrylate Monomer and Its Application in Fluorescence Imaging in vivo† [J]. Chem. J. Chinese Universities, 2016, 37(6): 1168. |
[13] | MI Xiaolong, JIAO Xiaojie, LIU Chang, HE Song, ZENG Xianshun. Rhodamine-based Cell Permeable Fluoresecent Turn-on Probes for Cupric Ion† [J]. Chem. J. Chinese Universities, 2016, 37(10): 1784. |
[14] | WU Tong, PENG Xiao-Jun, HU Ming-Ming, LIU Fei, FAN Jiang-Li. Synthesis and Application of an Efficient and Sensitive DNA Fluorescent Probe [J]. Chem. J. Chinese Universities, 2012, 33(07): 1407. |
[15] | ZHOU Li-Xia, HE Ding-Geng, HE Xiao-Xiao, QING Zhi-He, WANG Ke-Min, CAO Jie. Detection of E.coli O157: H7 Using Mannose-functionalized Hydrogels [J]. Chem. J. Chinese Universities, 2012, 33(04): 678. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||