Chem. J. Chinese Universities ›› 2020, Vol. 41 ›› Issue (11): 2526.doi: 10.7503/cjcu20200292
• Physical Chemistry • Previous Articles Next Articles
MA Xiangying1, LIAO Yanjun2, QIN Fanghong1, YIN Yuanhao1, HUANG Zaiyin1(), CHEN Qifeng1(
)
Received:
2020-05-26
Online:
2020-11-10
Published:
2020-11-06
Contact:
HUANG Zaiyin
E-mail:huangzaiyin@163.com;cqf408@163. com
Supported by:
CLC Number:
TrendMD:
MA Xiangying, LIAO Yanjun, QIN Fanghong, YIN Yuanhao, HUANG Zaiyin, CHEN Qifeng. Study on the Photocatalytic Performance of Carbon Doped g-C3N4 Based on in situ Photomicrocalorimeter-fluorescence Spectrometry[J]. Chem. J. Chinese Universities, 2020, 41(11): 2526.
Sample | C/N | N1/N2 | Area content of each characteristic peak of N1s(%) | Area content of each characteristic peak of C1s(%) | ||||
---|---|---|---|---|---|---|---|---|
398.61 eV | 400.29 eV | 401.35 eV | 284.60 eV | 286.24 eV | 287.76 eV | |||
C3N4 | 0.754 | 6.613 | 46.16 | 6.98 | 3.13 | 4.09 | 0.75 | 37.59 |
C3N4C1 | 0.775 | 6.424 | 45.23 | 7.04 | 3.24 | 5.09 | 1.54 | 36.43 |
C3N4C2 | 0.800 | 5.904 | 42.63 | 7.22 | 4.87 | 6.38 | 2.41 | 34.97 |
C3N4C3 | 0.844 | 5.522 | 40.59 | 7.35 | 4.98 | 7.94 | 4.02 | 32.72 |
C3N4C4 | 0.987 | 3.680 | 33.78 | 9.45 | 5.01 | 9.54 | 7.89 | 30.19 |
C3N4C5 | 1.158 | 2.830 | 30.21 | 10.67 | 5.15 | 10.76 | 13.67 | 28.89 |
C3N4C6 | 1.276 | 2.307 | 26.11 | 11.32 | 5.26 | 11.24 | 17.08 | 26.17 |
Sample | C/N | N1/N2 | Area content of each characteristic peak of N1s(%) | Area content of each characteristic peak of C1s(%) | ||||
---|---|---|---|---|---|---|---|---|
398.61 eV | 400.29 eV | 401.35 eV | 284.60 eV | 286.24 eV | 287.76 eV | |||
C3N4 | 0.754 | 6.613 | 46.16 | 6.98 | 3.13 | 4.09 | 0.75 | 37.59 |
C3N4C1 | 0.775 | 6.424 | 45.23 | 7.04 | 3.24 | 5.09 | 1.54 | 36.43 |
C3N4C2 | 0.800 | 5.904 | 42.63 | 7.22 | 4.87 | 6.38 | 2.41 | 34.97 |
C3N4C3 | 0.844 | 5.522 | 40.59 | 7.35 | 4.98 | 7.94 | 4.02 | 32.72 |
C3N4C4 | 0.987 | 3.680 | 33.78 | 9.45 | 5.01 | 9.54 | 7.89 | 30.19 |
C3N4C5 | 1.158 | 2.830 | 30.21 | 10.67 | 5.15 | 10.76 | 13.67 | 28.89 |
C3N4C6 | 1.276 | 2.307 | 26.11 | 11.32 | 5.26 | 11.24 | 17.08 | 26.17 |
Sample | Eg/eV | ECB/eV | EVB/eV | Sample | Eg/eV | ECB/eV | EVB/eV |
---|---|---|---|---|---|---|---|
C3N4 | 2.72 | -1.14 | 1.58 | C3N4C4 | 2.43 | -0.995 | 1.435 |
C3N4C1 | 2.44 | -1.00 | 1.44 | C3N4C5 | 2.45 | -1.005 | 1.445 |
C3N4C2 | 2.36 | -0.96 | 1.40 | C3N4C6 | 2.49 | -1.025 | 1.465 |
C3N4C3 | 2.11 | -0.835 | 1.275 |
Sample | Eg/eV | ECB/eV | EVB/eV | Sample | Eg/eV | ECB/eV | EVB/eV |
---|---|---|---|---|---|---|---|
C3N4 | 2.72 | -1.14 | 1.58 | C3N4C4 | 2.43 | -0.995 | 1.435 |
C3N4C1 | 2.44 | -1.00 | 1.44 | C3N4C5 | 2.45 | -1.005 | 1.445 |
C3N4C2 | 2.36 | -0.96 | 1.40 | C3N4C6 | 2.49 | -1.025 | 1.465 |
C3N4C3 | 2.11 | -0.835 | 1.275 |
Sample | (c0-c)/c0(%) | 102 Reaction rate constant, k/min-1 | R2 | Sample | (c0-c)/c0(%) | 102 Reaction rate constant, k/min-1 | R2 |
---|---|---|---|---|---|---|---|
RhB | 0.35 | -0.00575 | 0.9991 | C3N4C3 | 89.07 | -3.61 | 0.9917 |
C3N4 | 28.43 | -0.544 | 0.9783 | C3N4C4 | 49.56 | -1.10 | 0.9916 |
C3N4C1 | 66.66 | -1.85 | 0.9851 | C3N4C5 | 46.39 | -1.03 | 0.9893 |
C3N4C2 | 76.05 | -2.47 | 0.9733 | C3N4C6 | 44.14 | -0.941 | 0.9720 |
Sample | (c0-c)/c0(%) | 102 Reaction rate constant, k/min-1 | R2 | Sample | (c0-c)/c0(%) | 102 Reaction rate constant, k/min-1 | R2 |
---|---|---|---|---|---|---|---|
RhB | 0.35 | -0.00575 | 0.9991 | C3N4C3 | 89.07 | -3.61 | 0.9917 |
C3N4 | 28.43 | -0.544 | 0.9783 | C3N4C4 | 49.56 | -1.10 | 0.9916 |
C3N4C1 | 66.66 | -1.85 | 0.9851 | C3N4C5 | 46.39 | -1.03 | 0.9893 |
C3N4C2 | 76.05 | -2.47 | 0.9733 | C3N4C6 | 44.14 | -0.941 | 0.9720 |
Capture agent | Captured object | (c0-c)/c0(%) | ||||||
---|---|---|---|---|---|---|---|---|
C3N4 | C3N4C1 | C3N4C2 | C3N4C3 | C3N4C4 | C3N4C5 | C3N4C6 | ||
Triethanolamine | h+ | 8.97 | 24.78 | 32.27 | 28.75 | 8.18 | 8.96 | 9.56 |
Benzoquinone | ·O | 9.89 | 27.56 | 30.12 | 32.56 | 21.56 | 20.59 | 18.67 |
Isopropyl alcohol | ·OH | 15.21 | 45.54 | 54.56 | 63.68 | 25.82 | 23.78 | 21.34 |
Deionized water | Blank contrast | 15.41 | 45.73 | 54.73 | 63.80 | 26.62 | 23.54 | 21.59 |
Capture agent | Captured object | (c0-c)/c0(%) | ||||||
---|---|---|---|---|---|---|---|---|
C3N4 | C3N4C1 | C3N4C2 | C3N4C3 | C3N4C4 | C3N4C5 | C3N4C6 | ||
Triethanolamine | h+ | 8.97 | 24.78 | 32.27 | 28.75 | 8.18 | 8.96 | 9.56 |
Benzoquinone | ·O | 9.89 | 27.56 | 30.12 | 32.56 | 21.56 | 20.59 | 18.67 |
Isopropyl alcohol | ·OH | 15.21 | 45.54 | 54.56 | 63.68 | 25.82 | 23.78 | 21.34 |
Deionized water | Blank contrast | 15.41 | 45.73 | 54.73 | 63.80 | 26.62 | 23.54 | 21.59 |
Sample | Heat changes for different stages/mJ | Rcd/(μJ·s-1) | |||
---|---|---|---|---|---|
ab | bc | cd | ad | ||
C3N4 | -94.73 | 73.24 | 1504.56 | 1483.07 | 0.5337 ± 0.3774 |
C3N4C1 | -222.12 | 102.67 | 2820.52 | 2701.07 | 0.6748 ± 0.5487 |
C3N4C2 | -253.41 | 123.67 | 3217.84 | 3088.10 | 0.8674 ± 0.4472 |
C3N4C3 | -296.79 | 157.78 | 3768.74 | 3926.52 | 0.9799 ± 0.5356 |
C3N4C4 | -192.38 | 98.89 | 2467.54 | 2374.05 | 0.6529 ± 0.4415 |
C3N4C5 | -163.67 | 92.73 | 2089.93 | 2018.99 | 0.6207± 0.4319 |
C3N4C6 | -147.08 | 87.54 | 1867.66 | 1808.12 | 0.6009 ± 0.4698 |
Sample | Heat changes for different stages/mJ | Rcd/(μJ·s-1) | |||
---|---|---|---|---|---|
ab | bc | cd | ad | ||
C3N4 | -94.73 | 73.24 | 1504.56 | 1483.07 | 0.5337 ± 0.3774 |
C3N4C1 | -222.12 | 102.67 | 2820.52 | 2701.07 | 0.6748 ± 0.5487 |
C3N4C2 | -253.41 | 123.67 | 3217.84 | 3088.10 | 0.8674 ± 0.4472 |
C3N4C3 | -296.79 | 157.78 | 3768.74 | 3926.52 | 0.9799 ± 0.5356 |
C3N4C4 | -192.38 | 98.89 | 2467.54 | 2374.05 | 0.6529 ± 0.4415 |
C3N4C5 | -163.67 | 92.73 | 2089.93 | 2018.99 | 0.6207± 0.4319 |
C3N4C6 | -147.08 | 87.54 | 1867.66 | 1808.12 | 0.6009 ± 0.4698 |
1 | Wang X. C., Maeda K., Thomas A., Takanabe K., Xin G., Carlsson J. M., Domen K., Antonietti1 M., Nature Materials, 2009, 8(1), 76―80 |
2 | Su F. Z., Mathew S. C., Lipner G., Fu X., Antonietti M., Blechert S., Wang X., J. Am. Chem. Soc., 2010, 132, 16299―16301 |
3 | Yan S. C., Li Z. S., Zou Z. G., Langmuir, 2010, 26(6), 3894―3901 |
4 | Zhang J. S., Wang B., Wang X. C., Prog. Chem. Beijing, 2014, 26(1), 19―29 |
5 | Wang P., Huang B., Dai Y., Whangbo M. H., Phys. Chem. Chem. Phys., 2012, 14(28), 9813―9829 |
6 | Tonda S., Kumar S., Kandula S., Shanker V., J. Mater. Chem. A, 2014, 2(19), 6772―6780 |
7 | Li Y., Xu X., Zhang P., Gong Y., Li H. R., Wang Y., RSC Adv., 2013, 3(27), 10973―10982 |
8 | Chang C., Fu Y., Hu M., Wang C., Shan G., Zhu L., Appl. Catal. B: Environ., 2013, 142/143, 553―560 |
9 | Xiao P., Zhao Y. X., Wang T., Zhan Y., Wang H., Li J., Thomas A., Zhu J., Chem. Eur. J., 2014, 20(10), 2872―2878 |
10 | Zhang J. S., Wang X. C., International Conference on Clean Energy Science, 2011,4(3), 675―678 |
11 | Ma X. G., Lv Y. H., Xu J., Liu Y., Zhang R., Zhu Y., J. Phys. Chem. C, 2012, 116(44), 23485―23493 |
12 | Li J., Shen B., Hong Z., Lin B., Gao B., Chen Y., Chem. Commun. Royal Soc. Chem., 2012,48(98), 12017―12019 |
13 | Zhang J., Wu Y., Xing M., MLeghari S. A. K., Sajjad S., Energy Environ. Sci., 2010, 3(6), 715―726 |
14 | Duan X. Y., Zhao Y. J., Yao R. H., Solid State Commun., 2008, 147, 194―197 |
15 | Wang Q., Chen C., Ma W., Zhu H., Zhao J., Chem. Eur. J., 2009, 15(19), 4765―4769 |
16 | Zhang X., Zhang L., J. Phys. Chem. C,2010, 114(42), 18198―18206 |
17 | Xie K., Umezawa N., Zhang N., Reunchan P., Zhang Y., Ye J., Energy Environ. Sci., 2011, 4(10), 4211―4219 |
18 | Li H. L., Li F. P., Wan Z. Y., Jiao Y.C., Liu Y.Y., Wang P., Zhang X., Qin X., Dai Y., Huan B., Appl. Catal. B: Environ., 2018, 229(5), 114―120 |
19 | Zhao Z. W., Sun Y. J., Dong F., Zhang Y., Zhao H., RSC Adv., 2015, 5, 39549―39556 |
20 | Tong Z. W., Dong Y., Yang D., Zhao X., Shi J., Ding F., Zou X., Jiang Z., Chem. Eng. J., 2018,337, 312―321 |
21 | Zhang J. H., Wei M. J., Wei Z. W., Pan M., Su C. Y., Appl. Nano Mater., 2020, 3(2), 1010―1018 |
22 | Thomas A., Fischer A., Goettmann F., Antonietti M., Müller J. O., Schlögl R., Carlsson J. M., J. Mater. Chem., 2008, 18, 4893―4908 |
23 | Shiraishi Y., Kanazawa S., Kofuji Y., Sakamoto H., Ichikawa S., Tanaka S., Hirai T., Angew. Chem. Int. Ed., 2014, 53, 13454―13459 |
24 | Schwinghammer K., Mesch M. B., Duppel V., Ziegler C., Senker J., Lotsch B. V., J. Am. Chem. Soc., 2014, 136, 1730―1733 |
25 | Dong F., Zhao Z. W., Xiong T., Ni Z., Zhang W., Sun Y., Ho W. K., Appl. Mater. Interf., 2013, 5, 11392―11401 |
26 | Dong G. H., Zhao K., Zhang L. Z., Chem. Commun., 2012, 48, 6178―6180 |
27 | Dong F., Wang Z., Sun Y., Ho W. K., Zhang H., J. Colloid Interface Sci., 2013,401, 70―79 |
28 | He Y., Zhang L., Teng B., Fan M., Environ. Sci. Techn., 2015,49(1), 649―656 |
29 | Zhang J. H., Hou Y. J., Wang S. J., Zhu X., Zhu C., Wang Z., Li C., Jiang J., Wang H., Pan M., Su C., J. Mater. Chem. A, 2018, 6, 18252―18257 |
30 | Li X. X., Huang Z. Y., Liu Z. J., Diao K., Fan G., Huang Z., Tan X., Appl. Catal. B: Environ., 2016, 181, 79―87 |
31 | Qin J., Huo J., Zhang P., Zeng J., Wang T., Zeng H., Nanoscale, 2016, 8(4), 2249―2259 |
32 | Li J., Wu D., Iocozzia J., Du H., Liu X., YuanY., Zhou W., Li Z., Xue Z.,Lin Z., Angew. Chem. Int. Ed., 2019, 58, 1―6 |
33 | Sousa L. A. E., Beezer A. E., Hansen L. D., Clapham D., Connor J. A., Gaisford S., J. Phys. Chem. B, 2012, 116(22), 6356―6360 |
[1] | CHENG Qian, YANG Bolong, WU Wenyi, XIANG Zhonghua. S-doped Fe-N-C as Catalysts for Highly Reactive Oxygen Reduction Reactions [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220341. |
[2] | GONG Yanxi, WANG Jianbing, CHAI Buyu, HAN Yuanchun, MA Yunfei, JIA Chaomin. Preparation of Potassium Doped g-C3N4 Thin Film Photoanode and Its Application in Photoelectrocatalytic Oxidation of Diclofenac Sodium in Water [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220005. |
[3] | SONG Youwei, AN Jiangwei, WANG Zheng, WANG Xuhui, QUAN Yanhong, REN Jun, ZHAO Jinxian. Effects of Ag,Zn,Pd-doping on Catalytic Performance of Copper Catalyst for Selective Hydrogenation of Dimethyl Oxalate [J]. Chem. J. Chinese Universities, 2022, 43(6): 20210842. |
[4] | SONG Yingying, HUANG Lin, LI Qingsen, CHEN Limiao. Preparation of CuO/BiVO4 Photocatalyst and Research on Carbon Dioxide Reduction [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220126. |
[5] | SUN Xuefeng, RENAGUL Abdurahman, YANG Tongsheng, YANG Qianting. Synthesis and Luminescence Properties of Cr,In Co-doped Small Size MgGa2O4 Near-infrared Persistent Luminescence Nanoparticles [J]. Chem. J. Chinese Universities, 2022, 43(4): 20210850. |
[6] | WANG Zumin, MENG Cheng, YU Ranbo. Doping Regulation in Transition Metal Phosphides for Hydrogen Evolution Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220544. |
[7] | XU Xiaolong, FANG Lining, LIU Changyu, LIU Minchao, JIA Jianbo. Preparation of Z-type g-C3N4/Pt/TiO2 Nanotube Array Composite Electrode and Its Performance of Photoelectric Oxidation of Methanol [J]. Chem. J. Chinese Universities, 2021, 42(9): 2926. |
[8] | HONG Yangyu, XING Hongzhu, BING Qiming, GAO Xuwen, QI Bin, CHEN Yakun, SU Tan, ZOU Bo. Synthesis and Fluorescence Properties of Novel Ce3+-doped Manganese Phosphite Open-framework Materials [J]. Chem. J. Chinese Universities, 2021, 42(9): 2725. |
[9] | WU Yaqiang, LIU Siming, JIN Shunjin, YAN Yongqing, WANG Zhao, CHEN Lihua, SU Baolian. Synthesis of Zn-Doped NiCoP Catalyst with Porous Double-layer Nanoarray Structure and Its Electrocatalytic Properties for Hydrogen Evolution [J]. Chem. J. Chinese Universities, 2021, 42(8): 2483. |
[10] | CHEN Mingsu, ZHANG Huiru, ZHANG Qi, LIU Jiaqin, WU Yucheng. First-principles Study on the Catalytic Effect of Co,P co-Doped MoS2 in Lithium-sulfur Batteries [J]. Chem. J. Chinese Universities, 2021, 42(8): 2540. |
[11] | YANG Xiaomei, WU Qiang, GUO Ru, YE Kaibo, XUE Ping, WANG Xiaozhong, LAI Xiaoyong. Ordered Mesoporous NiS-loaded CdS with Ultrathin Frameworks for Efficient Photocatalytic H2 Production [J]. Chem. J. Chinese Universities, 2021, 42(5): 1581. |
[12] | LI Dongping, LI Bin, LI Changheng, YU Xuegang, SHAN Yan, CHEN Kezheng. Synthesis and Enhanced Photocatalytic Activity of Ni5P4/g-C3N4 [J]. Chem. J. Chinese Universities, 2021, 42(4): 1292. |
[13] | GUI Chen, WANG Haolin, SHAO Baixuan, YANG Yujing, XU Guangqing. Molten-salt-assistance Synthesis and Photocatalytic Hydrogen Evolution Performances of g-C3N4 Nanostructures [J]. Chem. J. Chinese Universities, 2021, 42(3): 827. |
[14] | LIU Zhigang, LI Jiabao, YANG Jian, MA Hao, WANG Chengyin, GUO Xin, WANG Guoxiu. Preparation of a Novel g-C3N4/Sn/N-doped Carbon Composite for Sodium Storage [J]. Chem. J. Chinese Universities, 2021, 42(2): 633. |
[15] | CHEN Xiaoyu, YU Ranbo. Research Progress on Doping of Molybdenum Disulfide and Hydrogen Evolution Reaction [J]. Chem. J. Chinese Universities, 2021, 42(2): 475. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||