Chem. J. Chinese Universities ›› 2020, Vol. 41 ›› Issue (9): 1917.doi: 10.7503/cjcu20200409
• Review • Previous Articles Next Articles
Received:
2020-07-01
Online:
2020-09-10
Published:
2020-09-02
Contact:
WANG Bo
E-mail:bowang@bit.edu.cn
Supported by:
CLC Number:
TrendMD:
LI Li, LI Pengfei, WANG Bo. Photocatalytic Application of Covalent Organic Frameworks[J]. Chem. J. Chinese Universities, 2020, 41(9): 1917.
COFs | co?Catalyst | Sacrificial donor | Solvent | Light irradiation | HER/ (μmol·h-1·g-1) | AQE | Ref. |
---|---|---|---|---|---|---|---|
TFPT?COF | Pt | 10%(volume raction) TEOA | Water | >420 nm | 1970 | 2.2%—3.9% (500 nm) | [ |
N0?COF | Pt | 1%(volume raction) TEOA | PBS solution | >420 nm | 23 | 0.001% (450 nm) | [ |
N1?COF | Pt | 1%(volume raction) TEOA | PBS solution | >420 nm | 90 | 0.077% (450 nm) | [ |
N2?COF | Pt | 1%(volume raction) TEOA | PBS solution | >420 nm | 438 | 0.19%(450 nm) | [ |
N3?COF | Pt | 1%(volume raction) TEOA | PBS solution | >420 nm | 1703 | 0.44%(450 nm) | [ |
PTP?COF | Pt | 1%(volume raction) TEOA | PBS solution | AM 1.5 | 83.83 | ― | [ |
A?TEBPY?COF | Pt | 10%(volume raction) TEOA | Water | AM 1.5 | 98 | ― | [ |
A?TENPY?COF | Pt | 10%(volume raction) TEOA | Water | AM 1.5 | 22 | ― | [ |
A?TEPPY? COF | Pt | 10%(volume raction) TEOA | Water | AM 1.5 | 6 | ― | [ |
TP?EDDA?COF | Pt | 10%(volume raction) TEOA | Water | >395 nm | 30 | ― | [ |
TP?BDDA?COF | Pt | 10%(volume raction) TEOA | Water | >395 nm | 324 | 1.8%(520 nm) | [ |
S?COF | Pt | 0.1 mol/L Ascorbic acid | Water | >420 nm | 4440 | ― | [ |
FS?COF | Pt | 0.1 mol/L Ascorbic acid | Water | >420 nm | 10100 | ― | [ |
FS?COF?WS5F | Pt/WS5F | 0.1 mol/L Ascorbic acid | Water | >420 nm | 16300 | 2.2%(600 nm) | [ |
TpPa?COF | Pt | 100 mg Sodium ascorbate | PBS solution | >420 nm | 1560 | ― | [ |
TpPa?COF?(CH3)2 | Pt | 100 mg Sodium ascorbate | PBS solution | >420 nm | 8330 | ― | [ |
TpPa?COF?NO2 | Pt | 100 mg Sodium ascorbate | PBS solution | >420 nm | 220 | ― | [ |
sp2c?COFERDN | Pt | 10%(volume fraction) TEOA | Water | >420 nm | 2120 | 0.48%(495 nm) | [ |
CN?COF | Pt | 10%(volume fraction) TEOA | Water | >420 nm | 10100 | 20.7%(425 nm) | [ |
NH2?Uio?66/TpPa?1?COF | Pt | 100 mg Sodium ascorbate | PBS solution | >420 nm | 23410 | ― | [ |
CdS?COF(90:10) | Pt | 10%(volume fraction) Lactic acid | Water | >420 nm | 3678 | 4.2%(420 nm) | [ |
Pt?PVP?TP?COF | Pt?PVP | 0.054 mol/L Ascorbic acid | Water | >420 nm | 8420 | 0.4%(475 nm) | [ |
N2?COF | Co | 1%(volume fraction) TEOA | Water/ACN (volume ratio1:4) | AM 1.5 | 782 | 0.16%(400 nm) | [ |
TpDTz?COF | Ni | 10%(volume fraction) TEOA | Water | AM 1.5 | 941 | ― | [ |
COFs | co?Catalyst | Sacrificial donor | Solvent | Light irradiation | HER/ (μmol·h-1·g-1) | AQE | Ref. |
---|---|---|---|---|---|---|---|
TFPT?COF | Pt | 10%(volume raction) TEOA | Water | >420 nm | 1970 | 2.2%—3.9% (500 nm) | [ |
N0?COF | Pt | 1%(volume raction) TEOA | PBS solution | >420 nm | 23 | 0.001% (450 nm) | [ |
N1?COF | Pt | 1%(volume raction) TEOA | PBS solution | >420 nm | 90 | 0.077% (450 nm) | [ |
N2?COF | Pt | 1%(volume raction) TEOA | PBS solution | >420 nm | 438 | 0.19%(450 nm) | [ |
N3?COF | Pt | 1%(volume raction) TEOA | PBS solution | >420 nm | 1703 | 0.44%(450 nm) | [ |
PTP?COF | Pt | 1%(volume raction) TEOA | PBS solution | AM 1.5 | 83.83 | ― | [ |
A?TEBPY?COF | Pt | 10%(volume raction) TEOA | Water | AM 1.5 | 98 | ― | [ |
A?TENPY?COF | Pt | 10%(volume raction) TEOA | Water | AM 1.5 | 22 | ― | [ |
A?TEPPY? COF | Pt | 10%(volume raction) TEOA | Water | AM 1.5 | 6 | ― | [ |
TP?EDDA?COF | Pt | 10%(volume raction) TEOA | Water | >395 nm | 30 | ― | [ |
TP?BDDA?COF | Pt | 10%(volume raction) TEOA | Water | >395 nm | 324 | 1.8%(520 nm) | [ |
S?COF | Pt | 0.1 mol/L Ascorbic acid | Water | >420 nm | 4440 | ― | [ |
FS?COF | Pt | 0.1 mol/L Ascorbic acid | Water | >420 nm | 10100 | ― | [ |
FS?COF?WS5F | Pt/WS5F | 0.1 mol/L Ascorbic acid | Water | >420 nm | 16300 | 2.2%(600 nm) | [ |
TpPa?COF | Pt | 100 mg Sodium ascorbate | PBS solution | >420 nm | 1560 | ― | [ |
TpPa?COF?(CH3)2 | Pt | 100 mg Sodium ascorbate | PBS solution | >420 nm | 8330 | ― | [ |
TpPa?COF?NO2 | Pt | 100 mg Sodium ascorbate | PBS solution | >420 nm | 220 | ― | [ |
sp2c?COFERDN | Pt | 10%(volume fraction) TEOA | Water | >420 nm | 2120 | 0.48%(495 nm) | [ |
CN?COF | Pt | 10%(volume fraction) TEOA | Water | >420 nm | 10100 | 20.7%(425 nm) | [ |
NH2?Uio?66/TpPa?1?COF | Pt | 100 mg Sodium ascorbate | PBS solution | >420 nm | 23410 | ― | [ |
CdS?COF(90:10) | Pt | 10%(volume fraction) Lactic acid | Water | >420 nm | 3678 | 4.2%(420 nm) | [ |
Pt?PVP?TP?COF | Pt?PVP | 0.054 mol/L Ascorbic acid | Water | >420 nm | 8420 | 0.4%(475 nm) | [ |
N2?COF | Co | 1%(volume fraction) TEOA | Water/ACN (volume ratio1:4) | AM 1.5 | 782 | 0.16%(400 nm) | [ |
TpDTz?COF | Ni | 10%(volume fraction) TEOA | Water | AM 1.5 | 941 | ― | [ |
COFs | Co?catalyst | Condition | Light irradiation/nm | Product (selectivity) | Activity/ (μmol·h-1·g-1) | TON/TOF* | Ref. |
---|---|---|---|---|---|---|---|
Re?CTF?py | Re | Solid?gas system | 200—1100 | CO | 353.05 | 4.8/— | [ |
Re?COF | Re | TEOA/MeCN(volume ratio 0.2:3) | >420 | CO(98%) | 750 | 48/— | [ |
Ni?TpBpy COF | Ni/ Ru(bpy)3Cl2 | TEOA/MeCN/H2O (volume ratio 1:3:1) | >420 | CO(96%) | 811.4 | 13.62/— | [ |
DQTP?COF?Co | Co/Ru(bpy)3Cl2 | TEOA/MeCN(volume ratio 1:4) | >420 | CO | 1020 | —/0.55 h-1 | [ |
DQTP?COF?Zn | Zn/Ru(bpy)3Cl2 | TEOA/MeCN(volume ratio 1:4) | >420 | HCOOH(90%) | 152.5 | —/0.08 h-1 | [ |
TTCOF?Zn | — | H2O | 420—800 | CO(100%) | 0.2055 | —/— | [ |
COF?367?Co NSs | Ru(bpy)3Cl2 | Ascorbic acid/0.1 mol/L KHCO3 | >420 | CO(78%) | 10162 | —/— | [ |
ACOF?1 | — | H2O | 420—800 | CH3OH | 0.36 | —/— | [ |
N3?COF | — | H2O | 420—800 | CH3OH | 0.57 | —/— | [ |
CT?COF | — | H2O | >420 | CO(98%) | 102.7 | —/— | [ |
COF?318/TiO2 | — | Solid?gas system | 380—800 | CO | 69.67 | —/— | [ |
COFs | Co?catalyst | Condition | Light irradiation/nm | Product (selectivity) | Activity/ (μmol·h-1·g-1) | TON/TOF* | Ref. |
---|---|---|---|---|---|---|---|
Re?CTF?py | Re | Solid?gas system | 200—1100 | CO | 353.05 | 4.8/— | [ |
Re?COF | Re | TEOA/MeCN(volume ratio 0.2:3) | >420 | CO(98%) | 750 | 48/— | [ |
Ni?TpBpy COF | Ni/ Ru(bpy)3Cl2 | TEOA/MeCN/H2O (volume ratio 1:3:1) | >420 | CO(96%) | 811.4 | 13.62/— | [ |
DQTP?COF?Co | Co/Ru(bpy)3Cl2 | TEOA/MeCN(volume ratio 1:4) | >420 | CO | 1020 | —/0.55 h-1 | [ |
DQTP?COF?Zn | Zn/Ru(bpy)3Cl2 | TEOA/MeCN(volume ratio 1:4) | >420 | HCOOH(90%) | 152.5 | —/0.08 h-1 | [ |
TTCOF?Zn | — | H2O | 420—800 | CO(100%) | 0.2055 | —/— | [ |
COF?367?Co NSs | Ru(bpy)3Cl2 | Ascorbic acid/0.1 mol/L KHCO3 | >420 | CO(78%) | 10162 | —/— | [ |
ACOF?1 | — | H2O | 420—800 | CH3OH | 0.36 | —/— | [ |
N3?COF | — | H2O | 420—800 | CH3OH | 0.57 | —/— | [ |
CT?COF | — | H2O | >420 | CO(98%) | 102.7 | —/— | [ |
COF?318/TiO2 | — | Solid?gas system | 380—800 | CO | 69.67 | —/— | [ |
1 | Diercks C. S., Yaghi O. M., Science, 2017, 355, 923—931 |
2 | Feng X., Ding X. S., Jiang D. L., Chem. Soc. Rev., 2012, 41, 6010—6022 [3] Ding S. Y., Wang W., Chem. Soc. Rev., 2013, 42, 548—568 |
4 | Diercks C. S., Kalmutzki M. J., Yaghi O. M., Molecules, 2017, 22, 1575—1580 |
5 | Côté A. P., Benin A. I., Ockwig N. W., O’Keeffe M., Matzger A. J., Yaghi O. M., Science, 2005, 310, 1166—1170 |
6 | Bisbey R. P., Dichtel W. R., ACS Cent. Sci., 2017, 3, 533—543 |
7 | Waller P. J., Gándara F., Yaghi O. M., Acc. Chem. Res., 2015, 48, 3053—3063 |
8 | Huang N., Wang P., Jiang D. L., Nat. Rev. Mater., 2016, 1, 1—19 |
9 | Yaghi O. M., J. Am. Chem. Soc., 2016, 138, 15507—15509 |
10 | Nagai A., Guo Z. Q., Feng X., Jin S. B., Chen X., Ding X. S., Jiang D. L., Nat. Commun., 2011, 2, 536 |
11 | O’Keeffe M., Peskov M. A., Ramsden S. J., Yaghi O. M., Acc. Chem. Res., 2008, 41, 1782—1789 |
12 | Côté A. P., El⁃Kaderi H. M., Furukawa H., Hunt J. R., Yaghi O. M., J. Am. Chem. Soc., 2007, 129, 12914—12915 |
13 | Segura J. L., Mancheno M. J., Zamora F., Chem. Soc. Rev., 2016, 45, 5635—5671 |
14 | Jin E., Asada M., Xu Q., Dalapati S., Addicoat M. A., Brady M. A., Xu H., Nakamura T., Heine T., Chen Q. H., Jiang D. L., Science, 2017, 357, 673—676 |
15 | El⁃Kaderi H. M., Hunt J. R., Mendoza-Cortés J. L., Côté A. P., Taylor R. E., O’Keeffe M., Yaghi O. M., Science, 2007, 316, 268—272 |
16 | Fang Q. R., Wang J. H., Gu S., Kaspar R. B., Zhuang Z. B., Zheng J., Guo H. X, Qiu S. L., Yan Y. S., J. Am. Chem. Soc., 2015, 137, 8352—8355 |
17 | Zhang Y. Y., Duan J. Y., Ma D., Li P. F., Li S. W., Li H. W., Zhou J. W., Ma X. J., Feng X., Wang B., Angew. Chem. Int. Ed., 2017, 56, 16313—16317 |
18 | Lin G. Q., Ding H. M., Chen R. F., Peng Z. K., Wang B. S., Wang C., J. Am. Chem. Soc., 2017, 139, 8705—8709 |
19 | Yahiaoui O., Fitch A. N., Hoffmann F., Fröba M., Thomas A., Roeser J., J. Am. Chem. Soc., 2018, 140, 5330—5333 |
20 | Furukawa H., Yaghi O. M., J. Am. Chem. Soc., 2009, 131, 8875—8883 |
21 | Cao D. P., Lan J. H., Wang W. C., Smit B., Angew. Chem. Int. Ed., 2009, 48, 4730—4733 |
22 | Kang Z. X., Peng Y. W., Qian Y. H., Yuan D. Q., Addicoat M. A., Heine T., Hu Z. G., Tee L., Guo Z. G., Zhao D., Chem. Mater., 2016, 28, 1277—1285 |
23 | Rogge S. M. J., Bavykina A., Hajek J., Garcia H., Olivos-Suarez A. I., Sepulveda-Escribano A., Vimont A., Clet G., Bazin P., Kapteijn F., Daturi M., Ramos-Fernandez E. V., Xamena F. X. L. I., Speybroeck V. V., Gascon J., Chem. Soc. Rev., 2017, 46, 3134—3184 |
24 | Ding S. Y., Gao J., Wang Q., Zhang Y., Song W. G., Su C. Y., Wang W., J. Am. Chem. Soc., 2011, 133, 19816—19822 |
25 | Zhang J., Han X., Wu X. W., Liu Y., Cui Y., J. Am. Chem. Soc., 2017, 139, 8277—8285 |
26 | Peng Y. W., Huang Y., Zhu Y. H., Chen B., Wang L. Y., Lai Z. C., Zhang Z. C., Zhao M., Tan C. L., Yang N. L., Shao F. W., Han Y., Zhang H., J. Am. Chem. Soc., 2017, 139, 8698—8704 |
27 | Wang S., Wang Q. L., Shao P. P., Han Y. Z., Gao X., Ma L., Yuan S., Ma X. J., Zhou J. W., Feng X., Wang B., J. Am. Chem. Soc., 2017, 139, 4258—4261 |
28 | Wan S., Guo J., Kim J., Ihee H., Jiang D. L., Angew. Chem. Int. Ed., 2008, 47, 8826—8830 |
29 | Haldar S., Chakraborty D., Roy B., Banappanavar G., Rinku K., Mullangi D., Hazra P., Kabra D., Vaidhyanathan R., J. Am. Chem. Soc., 2018, 140, 13367—13374 |
30 | Bessinger D., Ascherl L., Auras F., Bein T., J. Am. Chem. Soc., 2017, 139, 12035—12042 |
31 | Banerjee T., Gottschling K., Savasci G., Ochsenfeld C., Lotsch B. V., ACS Energy Lett., 2018, 3, 400—409 |
32 | He T., Geng K., Jiang D. L., ACS Mater. Lett., 2019, 1, 203—208 |
33 | Stegbauer L., Schwinghammer K., Lotsch B. V., Chem. Sci., 2014, 5, 2789—2793 |
34 | Vyas V. S., Haase F., Stegbauer L., Savasci G., Podjaski F., Ochsenfeld C., Lotsch B. V., Nat. Commun., 2015, 6, 8508 |
35 | Haase F., Banerjee T., Savasci G., Ochsenfeld C., Lotsch B. V., Faraday Discuss., 2017, 201, 247—264 |
36 | Stegbauer L., Zech S., Savasci G., Banerjee T., Podjaski F., Schwinghammer K., Ochsenfeld C., Lotsch B. V., Adv. Energy Mater., 2018, 8, 1703278 |
37 | Pachfule P., Acharjya A., Roeser J., Langenhahn T., Schwarze M., Schomacker R., Thomas A., Schmidt J., J. Am. Chem. Soc., 2018, 140, 1423—1427 |
38 | Wang X. Y., Chen L. J., Chong S. Y., Little M. A., Wu Y. Z., Zhu W. H., Clowes R., Yan Y., Zwijnenburg M. A., Sprick R. S., Cooper A. I., Nat. Chem., 2018, 10, 1180—1189 |
39 | Sheng J. L., Dong H., Meng X. B., Tang H. L., Yao Y. H., Liu D. Q., Bai L. L., Zhang F. M., Wei J. Z., Sun X. J., ChemCatChem, 2019, 11, 2313—2319 |
40 | Jin E. Q., Lan Z. A., Jiang Q. H., Geng K. Y., Li G. S., Wang X. C., Jiang D. L., Chem., 2019, 5, 1632—1647 |
41 | Luo M. L., Yang Q., Liu K. W., Cao H. M., Yan H. J., Chem. Commun., 2019, 55, 5829—5832 |
42 | Zhang F. M., Sheng J. L., Yang Z. D., Sun X. J., Tang H. L., Lu M., Dong H., Shen F. C., Liu J., Lan Y. Q., Angew. Chem. Int. Ed., 2018, 57, 12106—12110 |
43 | Thote J., Aiyappa H. B., Deshpande A., Diaz D. D., Kurungot S., Banerjee R., Chem. Eur. J., 2014, 20, 15961—15965 |
44 | Ming J. T., Liu A., Zhao J. W., Zhang P., Huang H. W., Lin H., Xu Z. T., Zhang X. M,, Wang X. X., Hofkens J., Roeffaers M. B. J., Long J. L., Angew. Chem. Int. Ed., 2019, 58, 18290—18294 |
45 | Banerjee T., Haase F., Savasci G., Gottschling K., Ochsenfeld C., Lotsch B. V., J. Am. Chem. Soc., 2017, 139, 16228—16234 |
46 | Biswal B. P., Vignolo-Gonzalez H. A., Banerjee T., Grunenberg L., Savasci G., Gottschling K., Nuss J., Ochsenfeld C., Lotsch B. V., J. Am. Chem. Soc., 2019, 141, 11082—11092 |
47 | Takeda H., Koike K., Inoue H., Ishitani O., J. Am. Chem. Soc., 2008, 130, 2023—2031 |
48 | Morimoto T., Nakajima T., Sawa S., Nakanishi R., Imori D., Ishitani O., J. Am. Chem. Soc., 2013, 135, 16825—16828 |
49 | Kou Y., Nabetani Y., Masui D., Shimada T., Takagi S., Tachibana H., Inoue H., J. Am. Chem. Soc., 2014, 136, 6021—6030 |
50 | Xu R., Wang X. S., Zhao H., Lin H., Huang Y. B., Cao R., Catal. Sci. Technol., 2018, 8, 2224—2230 |
51 | Yang S. Z., Hu W. H., Zhang X., He P. L., Pattengale B., Liu C. M., Cendejas M., Hermans I., Zhang X. Y., Zhang J., Huang J. E., J. Am. Chem. Soc., 2018, 140, 14614—14618 |
52 | Zhong W. F., Sa R. J., Li L. Y., He Y. J., Li L. Y., Bi J. H., Zhuang Z. Y., Yu Y., Zou Z. G., J. Am. Chem. Soc., 2019, 141, 7615—7621 |
53 | Lu M., Li Q., Liu J., Zhang F. M., Zhang L., Wang J. L., Kang Z. H., Lan Y. Q., Appl. Catal. B: Environ., 2019, 254, 624—633 |
54 | Lu M., Liu J., Li Q., Zhang M., Liu M., Wang J. L., Yuan D. Q., Lan Y. Q., Angew. Chem. Int. Ed., 2019, 58, 12392—12397 |
55 | Liu W. B., Li X. K., Wang C. M., Pan H. H., Liu W. P., Wang K., Zeng Q. D., Wang R. M., Jiang J. Z., J. Am. Chem. Soc., 2019, 141, 17431—17440 |
56 | Fu Y. H., Zhu X. L., Huang L., Zhang X. C., Zhang F. M., Zhu W. D., Appl. Catal. B: Environ., 2018, 239, 46—51 |
57 | Lei K., Wang D., Ye L. Q., Kou M. P., Deng Y., Ma Z. Y., Wang L., Kong Y., ChemSusChem, 2020, 13, 1725—1729 |
58 | Zhang M., Lu M., Lang Z. L., Liu J., Liu M., Chang J. N., Li L. Y., Shang L. J., Wang M., Li S. L., Lan Y. Q., Angew. Chem. Int. Ed., 2020, 59, 6500—6506 |
59 | Nicewicz D. A., Nguyen T. M., ACS Cat., 2013, 4, 355—360 |
60 | Shaw M. H., Twilton J., MacMillan D. W. C., J. Org. Chem., 2016, 81, 6898—6926 |
61 | Yoon T. P., Ischay M. A., Du J., Nat. Chem., 2010, 2, 527—532 |
62 | Qu Y. Q., Duan X. F., Chem. Soc. Rev., 2013, 42, 2568—2580 |
63 | Lang X. J., Chen X. D., Zhao J. C., Chem. Soc. Rev., 2014, 43, 473—486 |
64 | Zhi Y. F., Li Z. P., Feng X., Xia H., Zhang Y. M., Shi Z., Mu Y., Liu X. M., J. Mater. Chem. A, 2017, 5, 22933—22938 |
65 | Li Z. P., Zhi Y. F., Shao P. P., Xia H., Li G. S., Feng X., Chen X., Shi Z., Liu X. M., Appl. Catal. B: Environ., 2019, 245, 334—342 |
66 | Liu W. T., Su Q., Ju P. Y., Guo B. X., Zhou H., Li G. H., Wu Q. L., ChemSusChem, 2017, 10, 664—669 |
67 | Bhadra M., Kandambeth S., Sahoo M. K., Addicoat M., Balaraman E., Banerjee R., J. Am. Chem. Soc., 2019, 141, 6152—6156 |
68 | Chen R. F., Shi J. L., Ma Y., Lin G. Q., Lang X. J., Wang C., Angew. Chem. Int. Ed., 2019, 58, 6430—6434 |
69 | Li S., Li L., Li Y. J., Dai L., Liu C. X., Liu Y. Z., Li J. N., Lv J. N., Li P. F., Wang B., ACS Catal., 2020, 10, 8717—8726 |
70 | Yan X. L., Liu H., Li Y. S., Chen W. B., Zhang T., Zhao Z. Q., Xing G. L., Chen L., Macromolecules, 2019, 52, 7977—7983 |
71 | Wei P. F., Qi M. Z., Wang Z. P., Ding S. Y., Yu W., Liu Q., Wang L. K., Wang H. Z., An W. K., Wang W., J. Am. Chem. Soc., 2018, 140, 4623—4631 |
72 | Jiménez‐Almarza A., López‐Magano A., Marzo L., Cabrera S., Mas‐Ballesté R., Alemán J., ChemCatChem, 2019, 11, 4916—4922 |
73 | Nagai A., Chen X., Feng X., Ding X. S., Guo Z. Q., Jiang D. L., Angew. Chem. Int. Ed., 2013, 52, 3770—3774 |
74 | Chen X., Addicoat M. A., Jin E. Q., Zhai L. P., Xu H., Huang N., Guo Z. Q., Liu L. L., Irle S., Jiang D. L., J. Am. Chem. Soc., 2015, 137, 3241—3247 |
75 | Liu T. T., Hu X. Y., Wang Y. F., Meng L. Y., Zhou Y. A., Zhang J. X., Chen M., Zhang X. M., J. Photochem. Photobiol. B, 2017, 175, 156—162 |
76 | He S. J., Rong Q. F., Niu H. Y., Cai Y. Q., Chem. Commun., 2017, 53, 9636—9639 |
77 | Zhou P., Yu J. G., Jaroniec M., Adv. Mater., 2014, 26, 4920—4935 |
78 | He S. J., Rong Q. F., Niu H. Y., Cai Y. Q., Appl. Catal. B, 2019, 247, 49—56 |
79 | Deng Y., Zhang Z., Du P. Y., Ning X. M., Wang Y., Zhang D. X., Liu J., Zhang S. T., Lu X. Q., Angew. Chem. Int. Ed., 2020, 59, 6082—6089 |
80 | Chen W. B., Yang Z. F., Xie Z., Li Y. S., Yu X., Lu F. L., Chen L., J. Mater. Chem. A, 2019, 7, 998—1004 |
[1] | QIN Yongji, LUO Jun. Applications of Single-atom Catalysts in CO2 Conversion [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220300. |
[2] | LIN Zhi, PENG Zhiming, HE Weiqing, SHEN Shaohua. Single-atom and Cluster Photocatalysis: Competition and Cooperation [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220312. |
[3] | WU Yu, LI Xuan, YANG Hengpan, HE Chuanxin. Construction of Cobalt Single Atoms via Double-confinement Strategy for High-performance Electrocatalytic Reduction of Carbon Dioxide [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220343. |
[4] | TENG Zhenyuan, ZHANG Qitao, SU Chenliang. Charge Separation and Surface Reaction Mechanisms for Polymeric Single-atom Photocatalysts [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220325. |
[5] | ZHAO Yingzhe, ZHANG Jianling. Applications of Metal-organic Framework-based Material in Carbon Dioxide Photocatalytic Conversion [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220223. |
[6] | WANG Lijun, LI Xin, HONG Song, ZHAN Xinyu, WANG Di, HAO Leiduan, SUN Zhenyu. Efficient Electrocatalytic CO2 Reduction to CO by Tuning CdO-Carbon Black Interface [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220317. |
[7] | QIU Liqi, YAO Xiangyang, HE Liangnian. Visible-light-driven Selective Reduction of Carbon Dioxide Catalyzed by Earth-abundant Metalloporphyrin Complexes [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220064. |
[8] | XIA Wu, REN Yingyi, LIU Jing, WANG Feng. Chitosan Encapsulated CdSe QDs Assemblies for Visible Light-induced CO2 Reduction in an Aqueous Solution [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220192. |
[9] | ZHAO Runyao, JI Guipeng, LIU Zhimin. Efficient Electrocatalytic CO2 Reduction over Pyrrole Nitrogen-coordinated Single-atom Copper Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220272. |
[10] | WANG Guangqi, BI Yiyang, WANG Jiabo, SHI Hongfei, LIU Qun, ZHANG Yu. Heterostructure Construction of Noble-metal-free Ternary Composite Ni(PO3)2-Ni2P/CdS NPs and Its Visible Light Efficient Catalytic Hydrogen Production [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220050. |
[11] | SONG Yingying, HUANG Lin, LI Qingsen, CHEN Limiao. Preparation of CuO/BiVO4 Photocatalyst and Research on Carbon Dioxide Reduction [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220126. |
[12] | TAO Yu, OU Honghui, LEI Yongpeng, XIONG Yu. Research Progress of Single-atom Catalysts in Photocatalytic Reduction of Carbon Dioxide [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220143. |
[13] | FENG Li, SHAO Lanxing, LI Sijun, QUAN Wenxuan, ZHUANG Jinliang. Synthesis of Ultrathin Sm-MOF Nanosheets and Their Visible-light Induced Photodegradation of Mustard Simulant [J]. Chem. J. Chinese Universities, 2022, 43(4): 20210867. |
[14] | MENG Xiangyu, ZHAN Qi, WU Yanan, MA Xiaoshuang, JIANG Jingyi, SUN Yueming, DAI Yunqian. Photothermal Enhanced Photocatalytic Hydrogenation Performance of Au/RGO/Na2Ti3O7 [J]. Chem. J. Chinese Universities, 2022, 43(3): 20210655. |
[15] | GUO Biao, ZHAO Chencan, LIU Xinxin, YU Zhou, ZHOU Lijing, YUAN Hongming, ZHAO Zhen. Effects of Surface Hydrothermal Carbon Layer on the Photocatalytic Activity of Magnetic NiFe2O4 Octahedron [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220472. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||