Chem. J. Chinese Universities ›› 2019, Vol. 40 ›› Issue (5): 855.doi: 10.7503/cjcu20180688
• Review • Previous Articles Next Articles
HE Pengchen, ZHOU Jian, ZHOU Awu, DOU Yibo*(), LI Jianrong*(
)
Received:
2018-10-15
Online:
2019-05-06
Published:
2019-07-04
Contact:
DOU Yibo,LI Jianrong
E-mail:douyb@bjut.edu.cn;jrli@bjut.edu.cn
Supported by:
CLC Number:
TrendMD:
HE Pengchen,ZHOU Jian,ZHOU Awu,DOU Yibo,LI Jianrong. MOFs-Based Materials for Photocatalytic CO2 Reduction†[J]. Chem. J. Chinese Universities, 2019, 40(5): 855.
Fig.1 Structure(A) and CO2 and N2 adsorption isotherms(B) of PCN-222, UV-Vis spectra of PCN-22 and H2TCPP(C) and the amount of HCOO-(D) with PCN-22 as catalyst[33] (D) a. PCN-222; b H2TCPP; c. no PCN-222; d. no TEOA; e. no CO2. Copyright 2015, American Chemical Society.
Fig.2 Ligand structure of H2L1-H2L6(A), photocatalytic conversion schematic(B), plots of CO-TON versus time(C) and PXRD patterns of the catalysts(D)[41] Copyright 2011, American Chemical Society.
Fig.3 Structures of Ren-MOF and Ag?Ren-MOF based catalysts(A), PXRD of Ren-MOFs(B) and the photocatalytic activity of Ren-MOF(C)[42] Copyright 2017, American Chemical Society.
Fig.4 XRD patterns(A) and FTIR spectra(B), N2(C) and CO2(D) adsorption and desorption isotherms of SCu and SP[43] Copyright 2013, American Chemical Society.
Fig.5 Fabrication of Cu-TiO2/ZIF-8 membranes(A), effect of membrane composition(B) and Cu-TiO2 nanoparticles loading on the product yields(C)[51] Copyright 2017, American Chemical Society.
Fig.6 HKUST-1 and HKUST-1/TiO2 formation steps inside a microdroplet(A), TEM images of as-synthesized HKUST-1(B) and 33.3 HKUST-1/TiO2(C) at 300 ℃ and CO2 photoreduction performance of TiO2 and HKUST-1/TiO2 composites(D)[52] Inset of (B): the image of the contact angle measurement of HKUST-1 surface. Copyright 2017, American Chemical Society.
Fig.7 Schematic illustration of the fabrication process and CO2 photoreduction process of CsPbBr3/ZIFs(A) and photocatalytic CO2 reduction performances of CsPbBr3 and CsPbBr3@ZIFs(B, C)[59] Copyright 2018, American Chemical Society.
[1] | Klankermayer J., Wesselbaum S., Beydoun K., Leitner W., Angew. Chem. Int. Ed.,2016, 55(26), 7267—7343 |
[2] | Beckman E. J., Nature, 2016, 531(7593), 180—181 |
[3] | He M. Y., Sun Y. H., Han B. X., Angew. Chem. Int. Ed.,2013, 52(37), 9620—9633 |
[4] | Beckman E. J., Environ. Sci.Technol., 2002, 36(17), 347—353 |
[5] | Markewitz P., Kuckshinrichs W., Leitner W., Linssen J., Zapp P., Bongartz R., Schreiber A., Müller T. E., Energ. Environ. Sci.,2012, 5(6), 7281—7305 |
[6] | Hong J. D., Zhang W., Ren J., Xu R., Anal. Methods,2013, 5(5), 1086—1097 |
[7] | Liu X., Inagaki S., Gong J., Angew. Chem. Int. Ed.,2016, 55(48), 14924—14950 |
[8] | Wang S., Wang X., Angew. Chem. Int. Ed.,2016, 55(7), 2308—2320 |
[9] | Liu M., Pang Y. J., Zhang B., Luna P. D., Voznyy O., Xu J. X., Zheng X. L., Nature,2016, 537(7620), 382—386 |
[10] | Gao S., Lin Y., Jiao X. C., Sun Y. F., Luo Q. Q., Zhang W. H., Li D. Q., Yang J. L., Xie Y., Nature,2016, 529(7584), 68—71 |
[11] | Bailleul B., Berne N., Murik O., Petroutsos D., Prihoda J., Tanaka A., Villanova V., Bligny R., Flori S., Falconet D., Krieger-Liszkay A., Santabarbara S., Rappaport F., Joliot P., Tirichine L., Falkowski P. G., Cardol P., Bowler C., Finazzi G., Nature,2015, 524(7565), 366—369 |
[12] | Mifsud M., Gargiulo S., Iborra S., Arends I. W. C. E., Hollmann F., Corma A., Nat. Commun.,2014, 5, 3145 |
[13] | Shi J., Jiang Y., Jiang Z., Wang X., Wang X., Zhang S., Han P., Yang C., Chem. Soc. Rev.,2015, 44(17), 5981—6000 |
[14] | Zhou Y., Zhang L., Lin L., Wygant B. R., Liu Y., Zhu Y., Zheng Y., Mullins C. B., Zhao Y., Zhang X., Yu G., Nano Lett.,2017, 17(12), 8012—8017 |
[15] | Thompson W. A., Perier C., Maroto-Valer M. M., Appl. Catal. B: Environ.,2018, 238, 136—146 |
[16] | Jang Y. J., Jang J. W., Lee J., Kim J. H., Kumagai H., Lee J., Minegishi T., Kubota J., Domen D., Lee J. S., Energy Environ. Sci.,2015, 8(12), 3597—3604 |
[17] | Kumar P., Joshi C., Barras A., Sieber B., Addad A., Boussekey L., Szunerits S., Boukherroub R., Jain S. L., Appl. Catal. B: Environ.,2017, 205, 654—665 |
[18] | Zheng Z. Z., Xu H. T., Xu Z. L., Ge J. P., Small,2018, 14(5), 1702812 |
[19] | Pitre S. P., Mctiernan C. D, Vine W., DiPucchio R., Grenier M., Scaiano J. C., Sci. Rep.,2015, 5, 16397 |
[20] | Li Q., Guo B. D., Yu J. G., Ran J. G., Zhang B. H., Yan H. J., Gong J. R., J. Am. Chem. Soc.,2011, 133(28), 10878—10884 |
[21] | Liu Y. N., Wang R. X., Yang Z. K., Du H., Jiang Y. F., Shen C. C., Liang K., Xu A. W., Chinese J. Catal.,2015, 36(12), 2135—2144 |
[22] | Li X., Yu J., Low J., Fang Y. P., Xiao J., Chen X. B., J. Mater. Chem. A,2015, 3(6), 2485—2534 |
[23] | Kuppler R. J., Timmons D. J., Fang Q. R., Li J. R., Makal T. A., Young M. D., Yuan D., Zhao D., Zhuang W., Zhou H. C., Coordin. Chem. Rev.,2009, 253(23/24), 3042—3066 |
[24] | Li J. R., Sculley J., Zhou H. C., Chem. Rev.,2011, 112(2), 869—932 |
[25] | Li J. R., Yu J., Lu W., Sun L. B., Sculley J., Balbuena P. B., Zhou H. C., Nat. Commun.,2013, 4, 1538 |
[26] | Lan M., Guo R. M., Dou Y. B., Zhou J., Zhou A. W., Li J. R., Nano Energy,2017, 33, 238—246 |
[27] | Dou Y. B., Zhou J., Zhou A W., Li J. R., Nie Z. R., J. Mater. Chem. A,2017, 5(36), 19491—19498 |
[28] | Sumida K., Rogow D. L., Mason J. A., McDonald T. M., Bloch E. D., Herm Z. R., Bae T. H., Long J. R., Chem. Rev.,2012, 112(2), 724—781 |
[29] | Yang H., Du R. F., Fu Y. H., Guangdong Chemical Industry,2017, 44(10), 97—98 |
(杨欢, 杜荣飞, 傅仰河. 广东化工, 44(10), 97—98) | |
[30] | Lee C. Y., Farha O. K., Hong B. J., Sarjeant A. A., Nguyen S. T., Hupp J. T., J. Am. Chem. Soc.,2011, 133(40), 15858—15861 |
[31] | Luo T., Zhang J. L., Li W., He Z. H., Sun X. F., Shi J. B., Shao D., Zhang B. X., Tan X. N., Han B. X., ACS Appl. Mater. Interfaces,2017, 9 (47), 41594—41598 |
[32] | Chen D. S., Xing H. Z., Wang C. Q., Su Z. M., J. Mater. Chem. A,2016, 4(7), 2657—2662 |
[33] | Xu H. Q., Hu J. H., Wang D. K., Li Z. H., Zhang Q., Luo Y., Yu S. H., Jiang H. L., J. Am. Chem. Soc.,2015, 137(42), 13440—13443 |
[34] | Sadeghi N., Sharifnia S., Arabi M. S., J. CO2 Util. ,2016, 16, 450—457 |
[35] | Costentin C., Drouet S., Robert M., Saveant J. M., Science,2012, 338, 90—94 |
[36] | Wang D., Huang R., Liu W., Li Z., ACS Catal.,2014, 4(12), 4254—4260 |
[37] | Zhang S. Q., Li L., Zhao S. G., Sun Z. H., Hong M. C., Luo J. H., J. Mater. Chem. A,2015, 3(30), 15764—15768 |
[38] | Dan-Hardi M., Serre C., Frot T., Rozes L., Maurin G., Sanchez C., Férey G., J. Am. Chem. Soc.,2010, 131(31), 10857—10859 |
[39] | Fu Y., Sun D., Chen Y., Huang R., Ding Z., Fu X., Li Z., Angew. Chem. Int. Ed.,2012, 51(14), 3364—3367 |
[40] | Sun D. R., Fu Y. H., Liu W. J., Ye L., Wang D. K., Yang L., Fu X. Z., Li Z. H., Chem. Eur. J.,2013, 19(42), 14279—14285 |
[41] | Wang C., Xie Z., Dekrafft K. E., Lin W., J. Am. Chem. Soc.,2011, 133(34), 13445—13454 |
[42] | Choi K. M., Kim D., Rungtaweevoranit B., Trickett C. A., Barmanbek J. T., Alshammari A. S., Yang P., Yaghi O. M., J. Am. Chem. Soc.,2017, 139(1), 356—362 |
[43] | Liu Y., Yang Y., Sun Q., Wang Z., Huang B., Dai Y., Qin X., Zhang X., ACS Appl. Mater. Interface,2013, 5(15), 7654—7658 |
[44] | Fei H., Sampson M. D., Lee Y., Kubiak C. P., Cohen S. M., Inorg. Chem.,2015, 54(14), 6821—6828 |
[45] | Lee Y., Kim S., Fei H., Kang J. K., Cohen S. M., Chem. Commun.,2015, 51(92), 16549—16552 |
[46] | Chen Y., Wang D., Deng X., Li Z. H., Catal. Sci. Technol.,2017, 7(21), 4893—4904 |
[47] | Yui T., Kan A., Saitoh C., Koike K., Ibusuki T., Ishitani O., ACS Appl. Mater. Interfaces,2011, 3(7), 2594—2600 |
[48] | Ola O., Valer M. M., Liu D., Mackintosh S., Lee C. W., Wu J. C. S., Appl. Catal. B,2012, 126, 172—179 |
[49] | Habisreutinger S. N., Schmidt-Mende L., Stolarczyk J. K., Angew. Chem. Int. Ed.,2013, 52(29), 7372—7408 |
[50] | Yan S. S., Ouyang S. X., Xu H., Zhao M., Zhang X. L., Ye J. H., J. Mater. Chem. A,2016, 4(39), 15126—15133 |
[51] | Maina J. W., Schütz J. A., Grundy L., Ligneris E. D., Yi Z. F., Kong L. X., Pozo-Gonzalo C., Ionescu M., L. F., ACS Appl. Mater. Interface,2017, 9(40), 35010—35017 |
[52] | He X., Gan Z., Fisenko S., Wang D., El-Kaderi H. M., Wang W. N., ACS Appl. Mater. Interface,2017, 9(11), 9688—9698 |
[53] | Liu Q., Low Z. X., Li L. X., Razmjoua A., Wang K., Yao J. F., Wang H. T., J. Mater. Chem. A,2013, 1(38), 11563—11569 |
[54] | Zheng Y., Lin L., Ye X., Guo F., Wang X., Angew. Chem. Int. Ed.,2014, 53(44), 11926—11930 |
[55] | Lin J., Pan Z., Wang X., ACS Sustainable Chem. Eng.,2014, 2(3), 353—358 |
[56] | Wang W., Yu J. C., Shen Z., Chan D. K., Gu T., Chem. Commum.,2014, 50(70), 10148—10150 |
[57] | Liu S., Chen F., Li S., Xiong Y., Appl. Catal. B: Environ.,2017, 211, 1—10 |
[58] | Li R., Hu J., Deng M., Wang H., Wang X., Hu Y., Jiang H. L., Jiang J., Zhang Q., Xie Y., Xiong Y., Adv. Mater.,2014, 26(28), 4783—4788 |
[59] | Kong Z. C., Liao J. F., Dong Y. J., Xu Y. F., Chen H. C., Kuang D. B., Su C., Y., ACS Energy Lett.,2018, 3(11), 2656—2662 |
[60] | Su Y., Zhang Z., Liu H., Wang W., Appl. Catal. B: Environ.,2017, 200, 448—457 |
[61] | Sun D., Gao Y., Fu J., Zeng X., Chen Z., Li Z., Chem. Commun.,2015, 51(13), 2645—2648 |
[62] | Qin J., Wang S., Wang X., Appl. Catal. B: Environ.,2017, 209, 476—482 |
[63] | Shi L., Wang T., Zhang H., Chang K., Ye J., Adv. Funct. Mater.,2015, 25(33), 5360—5367 |
[64] | Zhang H., Wei J., Dong J., Liu G., Shi L., An P., Zhao G., Kong J., Wang X., Meng X., Zhang J., Ye J., Angew. Chem. Int. Ed.,2016, 55(46), 14310—14314 |
[1] | YANG Jingyi, SHI Siqi, PENG Huaitao, YANG Qihao, CHEN Liang. Integration of Atomically Dispersed Ga Sites with C3N4 Nanosheets for Efficient Photo-driven CO2 Cycloaddition [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220349. |
[2] | WANG Xintian, LI Pan, CAO Yue, HONG Wenhao, GENG Zhongxuan, AN Zhiyang, WANG Haoyu, WANG Hua, SUN Bin, ZHU Wenlei, ZHOU Yang. Techno-economic Analysis and Industrial Application Prospects of Single-atom Materials in CO2 Catalysis [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220347. |
[3] | QIN Yongji, LUO Jun. Applications of Single-atom Catalysts in CO2 Conversion [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220300. |
[4] | DING Yang, WANG Wanhui, BAO Ming. Recent Progress in Porous Framework-immobilized Molecular Catalysts for CO2 Hydrogenation to Formic Acid [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220309. |
[5] | WANG Ruhan, JIA Shunhan, WU Limin, SUN Xiaofu, HAN Buxing. CO2-involved Electrochemical C—N Coupling into Value-added Chemicals [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220395. |
[6] | ZHAO Yingzhe, ZHANG Jianling. Applications of Metal-organic Framework-based Material in Carbon Dioxide Photocatalytic Conversion [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220223. |
[7] | PENG Kuilin, LI Guilin, JIANG Chongyang, ZENG Shaojuan, ZHANG Xiangping. Research Progress for the Role of Electrolytes in the CO2 Electrochemical Reduction [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220238. |
[8] | ZHANG Xinxin, XU Di, WANG Yanqiu, HONG Xinlin, LIU Guoliang, YANG Hengquan. Effect of Mn Promoter on CuFe-based Catalysts for CO2 Hydrogenation to Higher Alcohols [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220187. |
[9] | YANG Dan, LIU Xu, DAI Yihu, ZHU Yan, YANG Yanhui. Research Progress in Electrocatalytic CO2 Reduction Reaction over Gold Clusters [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220198. |
[10] | XIA Wu, REN Yingyi, LIU Jing, WANG Feng. Chitosan Encapsulated CdSe QDs Assemblies for Visible Light-induced CO2 Reduction in an Aqueous Solution [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220192. |
[11] | WANG Zhengwen, GAO Fengxiang, CAO Han, LIU Shunjie, WANG Xianhong, WANG Fosong. Synthesis and Property of CO2 Copolymer⁃based UV-curable Polymer [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220236. |
[12] | ZHOU Leilei, CHENG Haiyang, ZHAO Fengyu. Research Progress of CO2 Hydrogenation over Pd-based Heterogeneous Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220279. |
[13] | SONG Yingying, HUANG Lin, LI Qingsen, CHEN Limiao. Preparation of CuO/BiVO4 Photocatalyst and Research on Carbon Dioxide Reduction [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220126. |
[14] | ZHANG Xiaoyu, XUE Dongping, DU Yu, JIANG Su, WEI Yifan, YAN Wenfu, XIA Huicong, ZHANG Jianan. MOF-derived Carbon-based Electrocatalysts Confinement Catalyst on O2 Reduction and CO2 Reduction Reactions [J]. Chem. J. Chinese Universities, 2022, 43(3): 20210689. |
[15] | ZHOU Ying, HE Peinan, FENG Haisong, ZHANG Xin. Optimal Distribution of Active Sites of CO2 Reduction Reaction Catalyzed by Diatomic Site M-N-C [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210640. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||