Chem. J. Chinese Universities ›› 2018, Vol. 39 ›› Issue (4): 688.doi: 10.7503/cjcu20170594
• Organic Chemistry • Previous Articles Next Articles
CUI Siqian1, LU Junrui1,*(), XIE Zhiqiang2,*(
), LU Bowei3, LIU Jinbiao1, LIU Mei2, MA Yao1, HU Xinlong1, LI Jiadong1
Received:
2017-08-31
Online:
2018-04-10
Published:
2018-03-22
Contact:
LU Junrui,XIE Zhiqiang
E-mail:lujunrui@tjut.edu.cn;785202876@qq.com
Supported by:
CLC Number:
TrendMD:
CUI Siqian, LU Junrui, XIE Zhiqiang, LU Bowei, LIU Jinbiao, LIU Mei, MA Yao, HU Xinlong, LI Jiadong. One-pot Fasion Synthesis of Pyrano[2,3-c]pyrazol-6-one Derivatives†[J]. Chem. J. Chinese Universities, 2018, 39(4): 688.
Compd. | m. p.(Ref.)/℃ | ESI-TOF-MS(calcd.), m/z[M+H]+ | Compd. | m. p.(Ref.)/℃ | ESI-TOF-MS(calcd.), m/z[M+H]+ |
---|---|---|---|---|---|
4a | 144-147(145[ | 241.0982(241.0977) | 4h | 200-203(199-200[ | 286.0834(286.0828) |
4b | 174-175(175-176[ | 179.0823(179.0820) | 4i | 181-182(181-182[ | 255.1141(255.1134) |
4c | 239-241(245[ | 165.0668(165.0664) | 4j | 228-230(229-233[ | 242.0936(242.0930) |
4d | 124-126(126[ | 275.0593(275.0587) | 4l | 138-139(140[ | 303.1139(303.1133) |
4e | 158-160 | 275.0584(275.0587) | 4m | 158-160(158[ | 275.0594(275.0587) |
4f | 181-183(180[ | 275.0582(275.0587) | 4n | 187-189 | 331.1453(331.1453) |
4g | 172-174 | 259.0882(259.0883) | 4o | 181-182 | 255.1139(255.1134) |
Table 1 Melting points and ESI-TOF-MS data of the target compounds 4a-4j and 4l-4o*
Compd. | m. p.(Ref.)/℃ | ESI-TOF-MS(calcd.), m/z[M+H]+ | Compd. | m. p.(Ref.)/℃ | ESI-TOF-MS(calcd.), m/z[M+H]+ |
---|---|---|---|---|---|
4a | 144-147(145[ | 241.0982(241.0977) | 4h | 200-203(199-200[ | 286.0834(286.0828) |
4b | 174-175(175-176[ | 179.0823(179.0820) | 4i | 181-182(181-182[ | 255.1141(255.1134) |
4c | 239-241(245[ | 165.0668(165.0664) | 4j | 228-230(229-233[ | 242.0936(242.0930) |
4d | 124-126(126[ | 275.0593(275.0587) | 4l | 138-139(140[ | 303.1139(303.1133) |
4e | 158-160 | 275.0584(275.0587) | 4m | 158-160(158[ | 275.0594(275.0587) |
4f | 181-183(180[ | 275.0582(275.0587) | 4n | 187-189 | 331.1453(331.1453) |
4g | 172-174 | 259.0882(259.0883) | 4o | 181-182 | 255.1139(255.1134) |
Entry | n(1a)/n(2a) | Temperature/℃ | t/h | Yieldb(%) | Entry | n(1a)/n(2a) | Temperature/℃ | t/h | Yieldb(%) |
---|---|---|---|---|---|---|---|---|---|
1 | 1:2 | 110 | 4 | 57.76 | 8 | 1:2.5 | 150 | 4 | 86.87 |
2 | 1:2 | 130 | 4 | 68.35 | 9 | 1:3 | 150 | 4 | 85.05 |
3 | 1:2 | 150 | 4 | 85.14 | 10 | 1:3.5 | 150 | 4 | 84.77 |
4 | 1:2 | 170 | 4 | 73.25 | 11 | 1:4 | 150 | 4 | 81.31 |
5 | 1:2 | 160 | 4 | 76.67 | 12 | 1:2 | 150 | 2 | 66.78 |
6 | 1:2 | 180 | 4 | 70.93 | 13 | 1:2 | 150 | 3 | 76.12 |
7 | 1:2 | 140 | 4 | 74.59 | 14 | 1:2 | 150 | 5 | 72.68 |
Table 2 Optimization of reaction conditionsa
Entry | n(1a)/n(2a) | Temperature/℃ | t/h | Yieldb(%) | Entry | n(1a)/n(2a) | Temperature/℃ | t/h | Yieldb(%) |
---|---|---|---|---|---|---|---|---|---|
1 | 1:2 | 110 | 4 | 57.76 | 8 | 1:2.5 | 150 | 4 | 86.87 |
2 | 1:2 | 130 | 4 | 68.35 | 9 | 1:3 | 150 | 4 | 85.05 |
3 | 1:2 | 150 | 4 | 85.14 | 10 | 1:3.5 | 150 | 4 | 84.77 |
4 | 1:2 | 170 | 4 | 73.25 | 11 | 1:4 | 150 | 4 | 81.31 |
5 | 1:2 | 160 | 4 | 76.67 | 12 | 1:2 | 150 | 2 | 66.78 |
6 | 1:2 | 180 | 4 | 70.93 | 13 | 1:2 | 150 | 3 | 76.12 |
7 | 1:2 | 140 | 4 | 74.59 | 14 | 1:2 | 150 | 5 | 72.68 |
Entry | Product | R | R1 | R2 | t/h | Yieldb(%) |
---|---|---|---|---|---|---|
1 | 4a | Ph | CH3 | H | 4 | 85.14 |
2 | 4b | CH3 | CH3 | H | 2.5 | 70.89 |
3 | 4c | H | CH3 | H | 2 | 72.56 |
4 | 4d | o-ClPh | CH3 | H | 5 | 40.42 |
5 | 4e | m-ClPh | CH3 | H | 4 | 65.21 |
6 | 4f | p-ClPh | CH3 | H | 4 | 79.45 |
7 | 4g | p-FPh | CH3 | H | 4 | 70.28 |
8 | 4h | p-NO2Ph | CH3 | H | 4 | 58.32 |
9 | 4i | p-CH3Ph | CH3 | H | 4 | 87.45 |
10 | 4j | Pyridine | CH3 | H | 3 | 61.36 |
11 | 4k | Pyrazine | CH3 | H | 3 | 65.17 |
12 | 4l | Ph | Ph | H | 5 | 78.87 |
13 | 4m | Ph | CH3 | Cl | 4 | 78.88 |
14 | 4n | Ph | CH3 | CH2Ph | 5 | 74.32 |
15 | 4o | Ph | CH3 | CH3 | 3 | 70.24 |
Table 3 Solvent-free preparation of products 4a-4o through different hydrazine and β-keto estera
Entry | Product | R | R1 | R2 | t/h | Yieldb(%) |
---|---|---|---|---|---|---|
1 | 4a | Ph | CH3 | H | 4 | 85.14 |
2 | 4b | CH3 | CH3 | H | 2.5 | 70.89 |
3 | 4c | H | CH3 | H | 2 | 72.56 |
4 | 4d | o-ClPh | CH3 | H | 5 | 40.42 |
5 | 4e | m-ClPh | CH3 | H | 4 | 65.21 |
6 | 4f | p-ClPh | CH3 | H | 4 | 79.45 |
7 | 4g | p-FPh | CH3 | H | 4 | 70.28 |
8 | 4h | p-NO2Ph | CH3 | H | 4 | 58.32 |
9 | 4i | p-CH3Ph | CH3 | H | 4 | 87.45 |
10 | 4j | Pyridine | CH3 | H | 3 | 61.36 |
11 | 4k | Pyrazine | CH3 | H | 3 | 65.17 |
12 | 4l | Ph | Ph | H | 5 | 78.87 |
13 | 4m | Ph | CH3 | Cl | 4 | 78.88 |
14 | 4n | Ph | CH3 | CH2Ph | 5 | 74.32 |
15 | 4o | Ph | CH3 | CH3 | 3 | 70.24 |
Peak No. | tR/min | HRMS, m/z[M+ | Molecular ionic formula | Product ion | Structure |
---|---|---|---|---|---|
1 | 7.637 | 221.1299 | C12H17N2 | 175.0882 149.0930 133.0779 106.0667 | ![]() |
2 | 4.683 | 175.0884 | C10H11N2O+ | 147.0918 133.0779 130.0664 98.9857 | ![]() |
3 | 9.016 | 573.2739 | C32H37N4 | 501.2517 399.1917 309.1222 287.1402 241.0986 215.1194 175.0877 | ![]() |
4 | 7.829 | 241.1014 | C14H13N2 | 215.1191 183.0928 175.0900 141.1141 118.0655 98.9655 | ![]() |
Table 4 The intermediate structures of the rection process identified by UPLC-HRMS
Peak No. | tR/min | HRMS, m/z[M+ | Molecular ionic formula | Product ion | Structure |
---|---|---|---|---|---|
1 | 7.637 | 221.1299 | C12H17N2 | 175.0882 149.0930 133.0779 106.0667 | ![]() |
2 | 4.683 | 175.0884 | C10H11N2O+ | 147.0918 133.0779 130.0664 98.9857 | ![]() |
3 | 9.016 | 573.2739 | C32H37N4 | 501.2517 399.1917 309.1222 287.1402 241.0986 215.1194 175.0877 | ![]() |
4 | 7.829 | 241.1014 | C14H13N2 | 215.1191 183.0928 175.0900 141.1141 118.0655 98.9655 | ![]() |
[1] | Varma R. S., Green Chem., 2014, 16(4), 2027-2041 |
[2] | Schröder K., Matyjaszewski K., Noonan K. J. T., Mathers R. T., Green Chem., 2014, 16(4), 1673-1686 |
[3] | Reddy M. V., Kim J. S., Lim K. T., Jeong Y. T., Tetrahedron Lett., 2014, 55(47), 6459-6462 |
[4] | Nagarapu L., Mallepalli R., Kumar U. N., Venkateswarlu P., Bantu R., Yeramanchi L., Tetrahedron Lett., 2012, 53(14), 1699-1700 |
[5] | Fang Y. G., Zhu M., Chem. J. Chinese Universities, 2015, 36(4), 660-664 |
(方应国, 朱敏. 高等学校化学学报, 2015, 36(4), 660-664) | |
[6] | Wang R., Liu Z. Q., J. Org. Chem., 2012, 77(8), 3952-3958 |
[7] | Xu Z. H., Zhou P., Lin C. H., Liu D. Y., Chin. J. Org. Chem., 2016, 36(8), 1948-1953 |
(许招会, 周鹏, 林春花, 刘德永. 有机化学, 2016, 36(8), 1948-1953) | |
[8] | Zhao X. H., Mou S. Y., Zhao L., Chem. J. Chinese Universities, 2012, 33(5), 954-957 |
(赵兴华, 牟书勇, 赵莉. 高等学校化学学报, 2012, 33(5), 954-957) | |
[9] | Lü C., Liu Y., Zhou X., Wang J., Chem. Res. Chinese Universities, 2015, 31(2), 208-211 |
[10] | Brichacek M., Lee D. E., Njardarson J. T., Org. Lett., 2008, 10(21), 5023-5026 |
[11] | Mack D. J., Njardarson J. T., Chem. Sci., 2012, 3(11), 3321-3325 |
[12] | El-Essawy F. A., Boshta N. M., El-Sawaf A. K., Nassar A. A., Khalafalah M. S., Chem. Res. Chinese Universities, 2016, 32(6), 967-972 |
[13] | Mercolini L., Mandrioli R., Ferranti A., Sorella V., Protti M., Epifano F., Curini M., Raggi A. M., J. Agric. Food Chem., 2013, 61(8), 1694-1701 |
[14] | Ueda T., Mase H., Oda N., Ito I., Chem. Pharm. Bull., 1981, 29(12), 3522-3528 |
[15] | Kuo S. C., Huang L. J., Nakamura H., J. Med. Chem., 1984, 27, 539-554 |
[16] | Huang L. J., Our M. J., Teng C. M., Kuo S. C., Chem. Pharm. Bull., 1992, 40(9), 2547-2551 |
[17] | El-Tamany E. S. H., El-Shahed F. A., Mohamed B. H., J. Serb. Chem. Soc., 1999, 64, 9-18 |
[18] | Wang J. L., Liu D., Zhang Z. J., Shan S., Han X., Srinivasula S. M., Croce C. M., Alnemri E. S., Huang Z., Proc. Natl. Acad. Sci. USA,2000, 97(13), 7124-7129 |
[19] | Ismail Z. H., Aly G. M., El-Degwi M. S., Heiba H. I., Ghorab M. M., Egypt. J. Biotechnol., 2003, 13, 73-82 |
[20] | Zaki M. E., Soliman H. A., Hiekal O. A., Rashad A. E., Z. Naturforsch., 2006, 61(1/2), 1-5 |
[21] | Abdelrazek F. M., Metz P., Kataeva O., Jaeger A., El-Mahrouky S. F., Arch. Pharm., 2007, 34, 543-548 |
[22] | Foloppe N., Fisher L. M., Howes R., Potter A., Robertson A. G. S., Surgenor A. E., J. Med. Chem., 2005, 48(13), 4332-4345 |
[23] | Lehmann F., Holm M., Laufer S., J. Comb. Chem., 2008, 10(3), 364-367 |
[24] | Smodiš J., Stanovnik B., Cheminform., 1998, 54, 9799-9810 |
[25] | Stanovnik B., Svete J., Tisler M., J. Heterocycl. Chem., 1989, 26(5), 1273-1275 |
[26] | Toplak R., Svete J., Stanovnik B., Grdadolnik S. G., Heterocycl. Chem., 1999, 36(1), 225-235 |
[27] | Samaritoni J. G., Thornburgh S., Graupner P. R., Cooper D. H., J. Heterocycl. Chem., 2007, 44(6), 1389-1393 |
[28] | Khan M. A., Cosenza A. G., Ellis G. P., J. Heterocycl. Chem., 1982, 19, 1077-1085 |
[29] | Ostromislensky I. I., Method of Producing Chemically Pure 4,4'-Di-(1-Phenyl-3-methyl-pyrazolonyl), US 2017671A, 1935-10-15 |
[30] | Nam N. L., Grandberg I. I., Chem. Heterocyc. Comp., 2006, 42(3), 326-330 |
[1] | ZHOU Zixuan, YANG Haiyan, SUN Yuhan, GAO Peng. Recent Progress in Heterogeneous Catalysts for the Hydrogenation of Carbon Dioxide to Methanol [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220235. |
[2] | YANG Dan, LIU Xu, DAI Yihu, ZHU Yan, YANG Yanhui. Research Progress in Electrocatalytic CO2 Reduction Reaction over Gold Clusters [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220198. |
[3] | SUN Cuihong, LYU Liqiang, LIU Ying, WANG Yan, YANG Jing, ZHANG Shaowen. Mechanism and Kinetics on the Reaction of Isopropyl Nitrate with Cl, OH and NO3 Radicals [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210591. |
[4] | CHENG Yuanyuan, XI Biying. Theoretical Study on the Fragmentation Mechanism of CH3SSCH3 Radical Cation Initiated by OH Radical [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220271. |
[5] | MENG Fanwei, GAO Qi, YE Qing, LI Chenxi. Potassium Poisoning Mechanism of Cu-SAPO-18 Catalyst for Selective Catalytic Reduction of NOx by Ammonia [J]. Chem. J. Chinese Universities, 2021, 42(9): 2832. |
[6] | YANG Yiying, ZHU Rongxiu, ZHANG Dongju, LIU Chengbu. Theoretical Study on Gold-catalyzed Cyclization of Alkynyl Benzodioxin to 8-Hydroxy-isocoumarin [J]. Chem. J. Chinese Universities, 2021, 42(7): 2299. |
[7] | LI Xinyi, LIU Yongjun. Theoretical Insights into the Cleavage of β-Hydroxy Ketone Catalyzed by Artificial Retro-aldolase RA95.5-8F [J]. Chem. J. Chinese Universities, 2021, 42(7): 2306. |
[8] | LI Yiwei, SHENTU Jiangtao, WANG Jingbo, LI Xiangyuan. Combustion Mechanism Construction Based on Minimized Reaction Network: C1⁃Oxygen Combustion [J]. Chem. J. Chinese Universities, 2021, 42(6): 1871. |
[9] | TIAN Shengqiao, WEI Meiju. Reaction Mechanism for Rh(Ⅱ)-catalyzed [3+3] Cyclization of Indole Derivatives and Propertis of Product [J]. Chem. J. Chinese Universities, 2021, 42(6): 1899. |
[10] | REN Ying, LI Changhua, WANG Tao, XUE Shanshan, ZHANG Tingting, JIA Jianfeng, WU Haishun. Theoretical Studies on Pd-catalyzed Oxidative N─H Carbonylation to Synthesis of 1,3,4-Oxadiazole-2(3H)-one Heterocyclic Compounds [J]. Chem. J. Chinese Universities, 2021, 42(6): 1793. |
[11] | QI Guodong, YE Xiaodong, XU Jun, DENG Feng. Progress in NMR Studies of Carbohydrates Conversion on Zeolites [J]. Chem. J. Chinese Universities, 2021, 42(1): 148. |
[12] | LI Xiangyuan, SHENTU Jiangtao, LI Yiwei, LI Juanqin, WANG Jingbo. Combustion Mechanism Construction Based on Minimized Reaction Network: Hydrogen-Oxygen Combustion † [J]. Chem. J. Chinese Universities, 2020, 41(4): 772. |
[13] | LI Xiangyuan,YAO Xiaoxia,SHENTU Jiangtao,SUN Xiaohui,LI Juanqin,LIU Mingxia,XU Shimin. Combustion Reaction Mechanism Construction by Two-parameter Rate Constant Method [J]. Chem. J. Chinese Universities, 2020, 41(3): 512. |
[14] | ZHANG Ling,DUAN Hongchang,TAN Zhengguo,WU Qinming,MENG Xiangju,XIAO Fengshou. Recent Advances in the Preparation of 8MR Zeolites for the Selective Catalytic Reduction of NOx(NH3-SCR) in Diesel Engines † [J]. Chem. J. Chinese Universities, 2020, 41(1): 19. |
[15] | ZHANG Lin, ZHANG Wei, YUE Xin, LI Pengjie, YANG Zuoyin, PU Min, LEI Ming. Theoretical Study on Mechanism of CO2 Hydrogenation to Formic Acid Catalyzed by Manganese Complex † [J]. Chem. J. Chinese Universities, 2019, 40(9): 1911. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||