Chem. J. Chinese Universities ›› 2015, Vol. 36 ›› Issue (8): 1491.doi: 10.7503/cjcu20150137
• Analytical Chemistry • Previous Articles Next Articles
FANG Yan1, MA Linlin2, SHAN Duoliang2, LU Xiaoquan2,*()
Received:
2015-02-09
Online:
2015-08-10
Published:
2015-07-17
Contact:
LU Xiaoquan
E-mail:luxq@nwnu.edu.cn
Supported by:
CLC Number:
TrendMD:
FANG Yan, MA Linlin, SHAN Duoliang, LU Xiaoquan. Preparation of Graphene/Gold Nanoparticle Composite Film Modified Electrode and Its Application for Determination of Bisphenol A†[J]. Chem. J. Chinese Universities, 2015, 36(8): 1491.
Fig.6 CV curves of ERGO-Au/GCE in PBS solutions(0.1 mol/L) with different pH values(4.0—8.0) containing 5.0×10-4 mol/L BPA(A), influences of pH on the oxidation peak currents(B) and the oxidation peak potentials of BPA(C)
Fig.7 CV curves for the 1.0×10-5 mol/L BPA in PBS(pH=6.0) on the ERGO-Au/GCE with different scan rates(A) and plot of peak current density vs. scan rate for BPA(B)Scan rate/(mV·s-1): a. 20; b. 60; c. 100; d. 140; e. 180; f. 220; g. 260; h. 300.
Fig.9 DPV curves of BPA on the ERGO-Au/GCE in 0.1 mol/L PBS(pH=6.0) containing different concentrations of BPA(A) and plots of the peak current vs. the concentration of BPA(B)c/(mol·L-1): a. 0; b. 3.00×10-8; c. 1.00×10-7; d. 5.99×10-7; e. 2.09×10-6; f. 3.24×10-6; g. 5.02×10-6; h. 7.12×10-6; i. 9.00×10-6; j. 1.10×10-5; k. 1.30×10-5.
Sample | Measured/(mol·L-1) | Added/(mol·L-1) | Found/(mol·L-1) | RSD(%) | Recovery(%) |
---|---|---|---|---|---|
Tap water | - | 5.00×10-6 | 4.82×10-6 | 3.3 | 96.4 |
Baby’s nipple | - | 5.00×10-6 | 4.93×10-6 | 3.5 | 98.6 |
PP cup | - | 5.00×10-6 | 5.18×10-6 | 4.1 | 103.5 |
Table 1 Determination of BPA in practical samples*
Sample | Measured/(mol·L-1) | Added/(mol·L-1) | Found/(mol·L-1) | RSD(%) | Recovery(%) |
---|---|---|---|---|---|
Tap water | - | 5.00×10-6 | 4.82×10-6 | 3.3 | 96.4 |
Baby’s nipple | - | 5.00×10-6 | 4.93×10-6 | 3.5 | 98.6 |
PP cup | - | 5.00×10-6 | 5.18×10-6 | 4.1 | 103.5 |
[1] | Abrams C. F., Kremer K., Macromolecules, 2003, 36, 260—267 |
[2] | Yin H. S., Zhou Y. L., Xu J., Ai S. Y., Cui L., Zhu L. S., Anal. Chim. Acta, 2010, 659(1/2), 144—150 |
[3] | Welshons W.V., Thayer K.A., Judy B.M., Taylor J.A., Curran E.M., vom Saal F.S., Environ. Health Perspect, 2003, 111, 994—1006 |
[4] | Apodaca D. C., Pernites R. B., Ponnapati R., del Mundo F. R., Adrincula R. C., Macromolecules, 2011, 44(17), 6669—6682 |
[5] | Xue J. Q., Li D. W., Qu L. L., Long Y. T., Anal. Chim. Acta, 2013, 777, 57—62 |
[6] | Moraes F. C., Silva T. A., Cesarino I., Machado S. A. S., Sens. Actuators B: Chem., 2013, 117, 14—18 |
[7] | Chen X. M., Ren T. Q., Ma M., Wang Z. G., Zhan G. Q., Li C. Y., Electrochim. Acta, 2013, 111, 49—56 |
[8] | Fan H. X., Li Y., Wu D., Ma H. M., Mao K. X., Fan D. W., Du B., Li H., Wei Q., Anal. Chim. Acta, 2012, 711, 24—28 |
[9] | Zheng Z. X., Du Y. L., Wang Z. H., Feng Q. L., Wang C. M., Analyst, 2013, 138(2), 693—701 |
[10] | Deng P. H., Xu Z. F., Kuang Y. F., J. Electroanal. Chem., 2013, 707, 7—14 |
[11] | Yin H. S., Zhou Y. L., Ai S. Y., Chen Q. P., Zhu X. B., Liu X. G., Zhu L. S., J. Hazard. Mater., 2010, 174(1—3), 236—243 |
[12] | Navarro C. B., Coronado E., Gastaldo C. M., Carbon, 2013, 54, 201—207 |
[13] | Tien H. W., Huang Y. L., Yang S. Y., Wang J. Y., Ma C. C. M., Carbon, 2011, 49(5), 1550—1560 |
[14] | Hong W. J., Bai H., Xu Y. X., Yao Z. Y., Gu Z. Z., Shi G. Q., J. Phys. Chem. C, 2010, 114(4), 1822—1826 |
[15] | Xu H. H., Wang X. L., Chen R., Yu Z. Y., Chem. Res. Chinese Universities, 2014, 30(2), 205—210 |
[16] | Lu X. Q., Qi H. T., Zhang X. F., Xue Z. H., Jin J., Zhou X. B., Liu X. H., Chem. Commun., 2011, 47(46), 12494—12496 |
[17] | Zhou X. B., Yuan C. X., Qin D. D., Xue Z. H., Wang Y. L., Du J., Ma L. L., Ma L., Lu X.Q., Electrochim. Acta, 2014, 119, 243—250 |
[18] | Xu C., Wang X., Zhu J. W., J. Phys. Chem. C, 2008, 112(50), 19841—19845 |
[19] | Zhang Y., Zhao Y. H., Yuan S. S., Wang H. G., He C. D., Sens. Actuators B: Chem., 2013, 185, 602—607 |
[20] | Jiang Y. Y., Lu Y. Z., Li F. H., Wu T. S., Niu L., Chen W., Electrochem. Commun., 2012, 19, 21—24 |
[21] | Liu C. B., Wang K., Luo S. L., Tang Y. H., Chen L. Y., Small, 2011, 7(9), 1203—1206 |
[22] | Hummers Jr W. S., Offeman R., J. Am. Chem. Soc., 1958, 80(6), 1339—1339 |
[23] | Li D., Muller M. B., Gilje S., Kaner R. B., Wallace G. G., Nature Nanotechnology, 2008, 3, 101—105 |
[24] | Jena B. K., Percival S. J., Zhang B., Anal. Chem., 2010, 82(15), 6737—6743 |
[25] | Kampouris D. K., Banks C. E., Chem. Commun., 2010, 46(47), 8986—8988 |
[26] | Zhang Y., Wang L. T., Lu D. B., Shi X. Z., Wang C. M., Duan X. J., Electrochim. Acta, 2012, 80, 77—83 |
[1] | WANG Ruina, SUN Ruifen, ZHONG Tianhua, CHI Yuwu. Fabrication of a Dispersible Large-sized Graphene Quantum Dot Assemblies from Graphene Oxide and Its Electrogenerated Chemiluminescence Behaviors [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220161. |
[2] | YAN Jiasen, HAN Xianying, DANG Zhaohan, LI Jiangang, HE Xiangming. Preparation and Performance of Paraffin/Expanded Graphite/Graphene Composite Phase Change Heat Storage Material [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220054. |
[3] | CAO Lei, CHEN Meijun, YUAN Gang, CHANG Gang, ZHANG Xiuhua, WANG Shengfu, HE Hanping. Solution-gated Graphene Field Effect Transistor Sensor Based on Crown Ether Functionalization for the Detection of Mercury Ion [J]. Chem. J. Chinese Universities, 2022, 43(4): 20210688. |
[4] | ZHENG Xuelian, YANG Cuicui, TIAN Weiquan. The Second Order Nonlinear Optical Properties of Azulene-defect Graphene Nanosheets with Full Armchair Edge [J]. Chem. J. Chinese Universities, 2022, 43(3): 20210806. |
[5] | YANG Junge, GAO Chengqian, LI Boxin, YIN Dezhong. Preparation of High Thermal Conductivity Phase Change Monolithic Materials Based on Pickering Emulsion Stabilized by Surface Modified Graphene Oxide [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210593. |
[6] | ZHANG Zhibo, SHANG Han, XU Wenxuan, HAN Guangdong, CUI Jinsheng, YANG Haoran, LI Ruixin, ZHANG Shenghui, XU Huan. Self-Assembly of Graphene Oxide at Poly(3-hydroxybutyrate) Microparticles Toward High-performance Intercalated Nanocomposites [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210566. |
[7] | ZHOU Ning, TANG Xiaohua, CAO Hong, ZHA Fei, LI Chun, XIE Chunyan, XU Mingping, SUN Yige. Preparation, Characterization and Degradation to BPA of Pomegranate-like Gel Microsphere Entrapmented Laccase [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210705. |
[8] | HU Bo, ZHU Haochen. Dielectric Constant of Confined Water in a Bilayer Graphene Oxide Nanosystem [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210614. |
[9] | YU Bin, CHEN Xiaoyan, ZHAO Yue, CHEN Weichang, XIAO Xinyan, LIU Haiyang. Graphene Oxide-based Cobalt Porphyrin Composites for Electrocatalytic Hydrogen Evolution Reaction [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210549. |
[10] | WANG Xueli, SONG Xiangwei, XIE Yanning, DU Niyang, WANG Zhenxin. Preparation, Characterization of Partially Reduced Graphene Oxide and Its Killing Effect on Human Cervical Cancer Cells [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210595. |
[11] | MA Lijuan, GAO Shengqi, RONG Yifei, JIA Jianfeng, WU Haishun. Theoretical Investigation of Hydrogen Storage Properties of Sc, Ti, V-decorated and B/N-doped Monovacancy Graphene [J]. Chem. J. Chinese Universities, 2021, 42(9): 2842. |
[12] | HUANG Shan, YAO Jiandong, NING Gan, XIAO Qi, LIU Yi. Efficient Determination of Alkaline Phosphatase Activity Based on Graphene Quantum Dots Fluorescent Probes [J]. Chem. J. Chinese Universities, 2021, 42(8): 2412. |
[13] | ZHU Deshuai, ZHAO Jianying, YANG Zhenghui, GUO Haiquan, GAO Lianxun. Graphene Oxide/Polyimide Composites with High Energy Storage Density Based on Multilayer Structure [J]. Chem. J. Chinese Universities, 2021, 42(8): 2694. |
[14] | LIU Yang, LI Qingbo, SUN Jie, ZHAO Xian. Direct Synthesis of Graphene on AlN Substrates via Ga Remote Catalyzation [J]. Chem. J. Chinese Universities, 2021, 42(7): 2271. |
[15] | LI Peihong, ZHANG Chunling, DAI Xueyan, SUI Yanlong. Progress of Graphene Oxide/Polymer Composite Hydrogel [J]. Chem. J. Chinese Universities, 2021, 42(6): 1694. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||