高等学校化学学报 ›› 2025, Vol. 46 ›› Issue (10): 20250156.doi: 10.7503/cjcu20250156

• 物理化学 • 上一篇    下一篇

高效一维豆荚状NiFe2O4-Ni x Fe1-x S异质结构电催化剂的制备及析氧反应性能

陈红1, 张杭1, 付思雨1, 张鑫2, 牟佳佳1()   

  1. 1.北华大学理学院
    2.材料科学与工程学院,吉林 132013
  • 收稿日期:2025-06-05 出版日期:2025-10-10 发布日期:2025-07-07
  • 通讯作者: 牟佳佳 E-mail:allthat2010@126.com
  • 基金资助:
    国家自然科学基金(51602006);吉林省科技厅项目(YDZJ202401389ZYTS);吉林省科技厅项目(YDZJ202301ZYTS276);吉林省教育厅项目(JJKH20230056KJ);北华大学大学生创新训练项目(S202410201092)

Fabrication of Highly Efficient 1D Pod-like NiFe2O4-Ni x Fe1-x S Heterogeneous Electrocatalysts for Enhanced Oxygen Evolution

CHEN Hong1, ZHANG Hang1, FU Siyu1, ZHANG Xin2, MU Jiajia1()   

  1. 1.College of Science
    2.School of Materials Science and Engineering,Beihua University,Jilin 132013,China
  • Received:2025-06-05 Online:2025-10-10 Published:2025-07-07
  • Contact: MU Jiajia E-mail:allthat2010@126.com
  • Supported by:
    the National Natural Science Foundation of China(51602006);the Foundation of Science and Technology Department of Jilin Province, China(YDZJ202401389ZYTS);the Foundation of the Department of Education of Jilin Province, China(JJKH20230056KJ);the College Student Innovation Training Program of Beihua University, China(S202410201092)

摘要:

针对析氧反应(OER)催化剂活性低、 反应速率差的问题, 构建纳米异质结催化剂是提升析氧反应动力学性能的高效方法. 本文通过静电纺丝结合硫化煅烧两步法, 设计并制备了一种一维豆荚状NiFe2O4-Ni x Fe1-x S异质结构. 通过调控硫化温度(350~550 ℃), 优化了NiFe2O4-Ni x Fe1-x S的异质界面结构与组分协同效应. 结果显示, 在450 ℃的硫化样品(NiFe2O4-Ni x Fe1-x S-450)中, Ni x Fe1-x S纳米片均匀负载于NiFe2O₄纳米棒表面, 形成稳定的异质界面, 并伴随Fe²+/Fe³⁺, Ni²+/Ni³⁺多价态共存及氧空位富集. 电化学测试结果表明, 该材料在 1 mol/L KOH中展现出优异的析氧性能: 在10和50 mA/cm2电流密度下的过电位分别为344和396 mV, Tafel斜率低至40.7 mV/dec, 同时电化学活性面积有所提升. 该材料性能提升的主要机制为: 异质界面处的电子再分布促进了活性位点暴露, 氧空位加速了电荷转移, 而一维豆荚结构增强了传质效率与结构稳定性.

关键词: 析氧反应, 异质界面, 电荷转移, 一维豆荚结构

Abstract:

To address the challenges of insufficient activity and sluggish kinetics in oxygen evolution reaction(OER) catalysts, this study innovatively designed and synthesized a one-dimensional pod-like NiFe2O4-Ni x Fe1-x S heterojunction material via a two-step method combining electrospinning and sulfurization calcination. By regulating the sulfurization temperature(350—550 ℃), the interfacial heterostructure and component synergy were optimized. Characterization results revealed that the sample sulfurized at 450 ℃(NiFe2O4-Ni x Fe1-x S-450) exhibited that Ni x Fe1-x S nanosheets uniformly anchored on NiFe2O4 nanorods, forming a stable heterointerface with coexisting Fe²+/Fe³⁺ and Ni²+/Ni³⁺ multivalent states, along with enriched oxygen vacancies. Electrochemical tests demonstrated outstanding OER performance in 1 mol/L KOH, achieving low overpotentials of 344 and 396 mV at current densities of 10 and 50 mA/cm², respectively, and a Tafel slope of 40.7 mV/dec. The Electronic redistribution at the heterointerface enhanced exposed active sites and oxygen vacancies accelerated charge transfer. The one-dimensional pod-like structure improved mass transport efficiency and structural stability. This work provides a new paradigm for the rational design of transition metal-based heterojunction catalysts through structure-performance synergy, offering valuable insights for advancing efficient water-splitting technologies.

Key words: Oxygen evolution reaction, Heterointerface, Charge transfer, One-dimensional pod-like structure

中图分类号: 

TrendMD: