高等学校化学学报

• 研究论文 • 上一篇    

高效的一维豆荚状NiFe2O4-NixFe1-xS异质结电催化剂制备及其析氧反应研究

陈红1,张杭1,付思雨1,张鑫2,牟佳佳1   

  1. 1. 北华大学理学院
    2. 北华大学材料科学与工程学院
  • 收稿日期:2025-06-05 修回日期:2025-06-30 网络首发:2025-07-07 发布日期:2025-07-07
  • 通讯作者: 牟佳佳 E-mail:allthat2010@126.com
  • 基金资助:
    国家自然科学基金(批准号:51602006)、吉林省科技厅项目(批准号:YDZJ202401389ZYTS、YDZJ202301ZYTS276)、吉林省教育厅项目(批准号:JJKH20230056KJ)和北华大学大学生创新训练项目(批准号:S202410201092)资助

Fabrication of highly efficient 1D pod-like NiFe2O4-NixFe1-xS heterojuncion electrocatalysts for enhanced oxygen evolution reaction

CHEN Hong1,ZHANG Hang1,FU Siyu1,ZHANG Xin2,MU Jiajia1   

  1. 1. College of Science, Beihua University 2. School of Materials Science and Engineering, Beihua University
  • Received:2025-06-05 Revised:2025-06-30 Online First:2025-07-07 Published:2025-07-07
  • Contact: MU Jiajia E-mail:allthat2010@126.com
  • Supported by:
    Supported by the National Natural Science Foundation of China(No.51602006), the Foundation of Science and Technology Department of Jilin Province,China(Nos.YDZJ202401389ZYTS, YDZJ202301ZYTS276), the Foundation of the Department of Education of Jilin Province,China (No.JJKH20230056KJ) and the College Student Innovation Training Program of Beihua University, China(No.S202410201092)

摘要: 针对析氧反应(OER)催化剂活性低,反应速率差的挑战,构建纳米异质结催化剂是提升析氧反应动力学性能的高效方法。本研究通过静电纺丝结合硫化煅烧两步法,创新性地设计并制备了一种一维豆荚状NiFe2O4-NixFe1-xS异质结构。通过调控硫化温度(350–550 ℃),优化了NiFe2O4-NixFe1-xS的异质界面结构与组分协同效应。表征结果显示,450 ℃硫化样品(NiFe2O4-NiₓFe1−ₓS-450)中NiₓFe1−ₓS纳米片均匀负载于NiFe2O₄纳米棒表面,形成稳定的异质界面,并伴随Fe²+/Fe³⁺、Ni²+/Ni³⁺多价态共存及氧空位富集。电化学测试表明,该材料在1 M KOH中展现出卓越的析氧性能:在10 mA cm-2和50 mA cm-2电流密度下的过电位分别为344 mV与396 mV,Tafel斜率低至40.7 mV dec⁻1,同时电化学活性面积有所提升。该材料性能提升的主要机制如下:异质界面处的电子再分布促进了活性位点暴露,氧空位加速了电荷转移,而一维豆荚结构增强了传质效率与结构稳定性。本研究为过渡金属基异质结构催化剂的理性设计提供了“结构-性能”协同优化新范式,对推进高效电催化析氧技术发展具有重要参考价值。

关键词: 析氧反应, 异质界面, 电荷转移, 一维豆荚结构

Abstract: To address the challenges of insufficient activity and sluggish kinetics in oxygen evolution reaction (OER) catalysts, this study innovatively designed and synthesized a one-dimensional pod-like NiFe2O4-NiₓFe1-ₓS heterojunction material via a two-step method combining electrospinning and sulfurization calcination. By regulating the sulfurization temperature (350–550 °C), the interfacial heterostructure and component synergy were optimized. Characterization results revealed that the sample sulfurized at 450 °C (NiFe2O4-NiₓFe1-ₓS-450) exhibited NiₓFe1-ₓS nanosheets uniformly anchored on NiFe2O4 nanorods, forming a stable heterointerface with coexisting Fe²+/Fe³⁺and Ni²+/Ni³⁺multivalent states, along with enriched oxygen vacancies. Electrochemical tests demonstrated outstanding OER performance in 1 M KOH, achieving low overpotentials of 344 mV and 396 mV at current densities of 10 mA cm-² and 50 mA cm-², respectively, and a Tafel slope of 40.7 mV dec-¹. The Electronic redistribution at the heterointerface enhanced exposed active sites, oxygen vacancies accelerated charge transfer. The one-dimensional pod-like structure improved mass transport efficiency and structural stability. This work provides a new paradigm for the Rational design of transition metal-based heterojunction catalysts through structure-performance synergy, offering valuable insights for advancing efficient water-splitting technologies.

Key words: Oxygen evolution reaction, Heterointerface, Charge transfer, One-dimensional pod-like structure

中图分类号: 

TrendMD: