高等学校化学学报 ›› 2025, Vol. 46 ›› Issue (2): 20240457.doi: 10.7503/cjcu20240457
• 综合评述 • 上一篇
收稿日期:
2024-10-09
出版日期:
2025-02-10
发布日期:
2024-11-13
通讯作者:
刘定斌
E-mail:liudb@nankai.edu.cn
基金资助:
Received:
2024-10-09
Online:
2025-02-10
Published:
2024-11-13
Contact:
LIU Dingbin
E-mail:liudb@nankai.edu.cn
Supported by:
摘要:
表面增强拉曼光谱(SERS)是一种已被广泛应用于疾病诊断、 药物筛选及生物分析等领域的光谱检测方法, 它不仅可以提供丰富的化学指纹信息, 而且具有灵敏度高、 抗光漂白和光降解能力强等优点. 然而, 由于SERS增强基底的结构均一性差和化学分子吸附数量的不确定性, 导致检测结果重现性差, 其定量分析面临诸多挑战. 通过引入内标信号可以消除或减少外部干扰因素, 从而实现SERS的准确定量分析. 本文首先阐述了内标法的机理, 然后介绍了内标法的主要类型, 接着举例说明了内标型SERS探针在环境分析、 食品药品分析以及生物分析等领域的应用, 最后展望了内标型SERS面临的挑战及未来发展方向.
中图分类号:
TrendMD:
毕英娜, 刘定斌. 基于内标法的表面增强拉曼光谱在定量分析中的应用. 高等学校化学学报, 2025, 46(2): 20240457.
BI Yingna, LIU Dingbin. Internal Standard Method-based Surface-enhanced Raman Spectroscopy for Quantitative Analysis. Chem. J. Chinese Universities, 2025, 46(2): 20240457.
Fig.3 Main types of SERS internal standard methods(A, B) Intrinsic internal standard method[30,33]; (C, D) external internal standard method[36,38]; (E, F) embedded internal standard method[44,52]. (A) Copyright 2023, Elsevier; (B) Copyright 2017, John Wiley and Sons; (C) Copyright 2018, American Chemical Society; (D) Copyright 2015, American Chemical Society; (E) Copyright 2015, John Wiley and Sons; (F) Copyright 2022, American Chemical Society.
Fig.4 Schematic overview of Au@Ag@ZIF⁃8 SERS substrates for gas⁃phase detection of neurotoxic agents in air(A)[59] and schematic illustration of simultaneous in situ extraction and self⁃assembly of AuSPs for SERS detection of OCPs in water(B)[61](A) Copyright 2021, American Chemical Society; (B) Copyright 2021, American Chemical Society.
Fig.5 Schematic representation of simultaneous in situ extraction and fabrication of SERS substrate in the detection of thiram residue on irregular samples(A)[64] and schematic illustration of NH2⁃MIL⁃101@AuNPs preparation and its application in multiple complex samples(B)[67](A) Copyright 2018, American Chemical Society; (B) Copyright 2023, Elsevier.
Fig.6 Schematic diagram of the testing principle of intracellular and extracellular multiple ratio gold nanoprobes(A)[70] and schematic illustration of the self⁃referenced renal⁃clearable synthetic biomarker(Glu⁃RR⁃AuNC) for quantitative urinary monitoring of cancer development(B)[71](A) Copyright 2021, Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature; (B) Copyright 2023, American Chemical Society.
Fig.7 Schematic illustration of Au@PB NPs and their Raman signals compared with cells and the FA functionalized SERRS tag used for HeLa cell imaging(A)[75], PB as a background⁃free internal standard for probe profiling in live cells(B)[76], and schematic diagram of the detection and elimination process of bacteria based on the multifunctional SERS platform(C)[77](A) Copyright 2017, American Chemical Society; (B) Copyright 2020, American Chemical Society; (C) Copyright 2021, American Chemical Society.
1 | Raman C. V., Krishnan K. S., Nature, 1928, 121(3048), 501—502 |
2 | Fleischmann M., Hendra P., McQuillan A., Chem. Phys. Lett., 1974, 26(2), 163—166 |
3 | Jeanmaire D. L., van Duyne R. P., J. Electroanal Chem. Interfacial Electrochem., 1977, 84(1), 1—20 |
4 | Albrecht M. G., Creighton J. A., J. Am. Chem. Soc., 1977, 99(15), 5215—5217 |
5 | Moskovits M., J. Chem. Phys., 1978, 69(9), 4159—4161 |
6 | Nie S., Emory S. R., Science, 1997, 275(5303), 1102—1106 |
7 | Kneipp K., Wang Y., Kneipp H., Perelman L. T., Itzkan I., Dasari R. R., Feld M. S., Phys. Rev. Lett., 1997, 78(9), 1667 |
8 | Lee S., Dang H., Moon J. I., Kim K., Joung Y., Park S., Yu Q., Chen J., Lu M., Chen L., Joo S., Choo J., Chem. Soc. Rev., 2024, 53, 5394—5427 |
9 | Ying Y., Tang Z., Liu Y., Nanoscale, 2023, 15(26), 10860—10881 |
10 | Xu Y., Dong Q., Cong S., Zhao Z., Analysis & Sensing, 2024, 4, e202300067 |
11 | Liu H., Gao X., Xu C., Liu D., Theranostics, 2022, 12(4), 1870—1903 |
12 | Li Q., Huo H., Wu Y., Chen L., Su L., Zhang X., Song J., Yang H., Adv. Sci., 2023, 10(8), 2202051 |
13 | Jiang C., Liu R., Han G., Zhang Z., Chem. Commun., 2013, 49, 6647—6649 |
14 | Cai L., Fang G., Tang J., Cheng Q., Han X., Int. J. Mol. Sci., 2022, 23(22), 13868 |
15 | Wu L., Dias A., Dieguez L., Biosens. Bioelectron., 2022, 204, 114075 |
16 | Jebakumari K. A. E., Murugasenapathi N. K., Palanisamy T., Biosensors, 2023, 13(1), 102 |
17 | Liu L., Ma W., Wang X., Li S., Biosensors, 2023, 13(3), 350 |
18 | Shi L., Zhang L., Tian Y., Analysis & Sensing, 2023, 3(2), e202200064 |
19 | Li C., Huang Y., Li X., Zhang Y., Chen Q., Ye Z., Alqarni Z., Bell S. E. J., Xu Y., J. Mater. Chem. C, 2021, 9(35), 11517—11552 |
20 | Sultangaziyev A., Ilyas A., Dyussupova A., Bukasov R., Biosensors, 2022, 12(11), 967 |
21 | Vendamani V. S., Rao S. V. S. N., Pathak A. P., Soma V. R., ACS Appl. Nano Mater., 2022, 5(4), 4550—4582 |
22 | Zhang X., Fan A., Pan Y., Liu X., Zhao Z., Song Y., Zhang X., ACS Appl. Nano Mater., 2022, 5(10), 15738—15747 |
23 | Xi W. J., Shrestha B. K., Haes A. J., Anal. Chem., 2018, 90(1), 128—143 |
24 | Le Ru E. C., Auguié B., ACS Nano, 2024, 18(14), 9773—9783 |
25 | Pérez⁃Jiménez A. I., Lyu D., Lu Z., Liu G., Ren B., Chem. Sci., 2020, 11(18) 4563—4577 |
26 | Shen Y., Yue J., Xu W., Xu S., Theranostics, 2021, 11(10), 4872—4893 |
27 | Yoshida K., Itoh T., Tamaru H., Biju V., Ishikawa M., Ozaki Y., Phys. Rev. B, 2010, 81(11), 115406 |
28 | Xing H. J., Yin Z. H., Zhang J., Zhu Y., Laser & Optoelectronics Progress, 2020, 57(3), 10 |
29 | Péron O., Rinnert E., Toury T., de la Chapelle M. L., Compere C., Analyst, 2011, 136(5), 1018—1022 |
30 | Wang T., Ji B., Cheng Z., Chen L., Luo M., Wei J., Wang Y., Zou L., Liang Y., Zhou B., Li P., Biosens. Bioelectron., 2023, 228, 115191 |
31 | Peksa V., Jahn M., Štolcová L., Schulz V., Proška J., Procházka M., Weber K., Cialla⁃May D., Popp J., Anal. Chem., 2015, 87(5), 2840—2844 |
32 | Zou Y., Chen L., Song Z., Ding D., Chen Y., Xu Y., Wang S., Lai A., Zhang Y., Sun Y., Chen Z., Tan W., Nano Res., 2016, 9, 1418—1425 |
33 | Tian H. H., Zhang N., Tong L. M., Zhang J., Small Methods, 2017, 1(6), 1700126 |
34 | Li X. T., Liu H. M., Chen Y., Gu C. J., Wei G. D., Zhou J., Jiang T., ACS Sustainable Chem. Eng., 2021, 9(38), 12885—12898 |
35 | Wu Y., Liu J., Xu R., Li J., Fu C., Shi W., Chen J., Microchem. J., 2024, 110127 |
36 | Yu F., Su M., Tian L., Wang H., Liu H., Anal. Chem., 2018, 90(8), 5232—5238 |
37 | Wang Y. P., Yu C. W., Ji H. Y., Liu Z. H., Wang X. T., Ji Y. H., Sun X. M., Zhao Y., Qiu X. H., Zhang T., Li J., Liu X., Lv X. P., Cai B. Z., Zhao Y. Q., Huang J. A., Li Y., Chemical Engineering Journal, 2023, 452, 139588 |
38 | Xu L. J., Lei Z. C., Li J. X., Zong C., Yang C. J., Ren B., J. Am. Chem. Soc., 2015, 137(15), 5149—5154 |
39 | Cheng H. W., Tsai H. M., Wang Y. L., Anal. Chem., 2023, 95(46), 16967—16975 |
40 | Zhang D. M., Xie Y., Deb S. K., Davison V. J., Ben⁃Amotz D., Anal. Chem., 2005, 77(11), 3563—3569 |
41 | Yin P. G., Jiang L., Lang X. F., Guo L., Yang S. H., Biosens. Bioelectron., 2011, 26(12), 4828—4831 |
42 | Li G., Hao Q., Li M., Zhao X., Song W., Fan X., Qiu T., Adv. Mater. Interfaces, 2023, 10(7), 2202127 |
43 | Yan X., Zhao H., Shi X., Yang Z., Ma J., ACS Appl. Mater. Interfaces, 2023, 15(10), 13427—13438 |
44 | Shen W., Lin X., Jiang C. Y., Li C. Y., Lin H. X., Huang J. T., Wang S., Liu G. K., Yan X. M., Zhong Q. L., Ren B., Angew. Chem. Int. Ed. Engl., 2015, 54(25), 7308—7312 |
45 | Guo J., Liu Y., Ju H., Lu G., Trac⁃Trend Anal. Chem., 2022, 146, 116488 |
46 | Ma H., Pan S. Q., Wang W. L., Yue X. X., Xi X. H., Yan S., Wu D. Y., Wang X., Liu G., Ren B., ACS Nano, 2024, 18(22), 14000—14019 |
47 | Fu B. B., Tian X. D., Song J. J., Wen B. Y., Zhang Y. J., Fang P. P., Li J. F., Anal. Chem., 2022, 94(27), 9578—9585 |
48 | Lim D. K., Jeon K. S., Hwang J. H., Kim H., Kwon S., Suh Y. D., Nam J. M., Nat. Nanotechnol., 2011, 6(7), 452—460 |
49 | Song J., Duan B., Wang C., Zhou J., Pu L., Fang Z., Wang P., Lim T. T., Duan H., J. Am. Chem. Soc., 2014, 136(19), 6838—6841 |
50 | Ma S., Li Q., Yin Y., Yang J., Liu D., Small, 2017, 13(15), 1603340 |
51 | Jiang X., Tan Z. Y., Lin L., He J., He C., Thackray B. D., Zhang Y. Q., Ye J., Small Methods, 2018, 2(11), 1800182 |
52 | Chen S., Fan J. Y., Lv M. Y., Hua C. F., Liang G. L., Zhang S. H., Anal. Chem., 2022, 94(42), 14675—14681 |
53 | Terry L. R., Sanders S., Potoff R. H., Kruel J. W., Jain M., Guo H., Anal. Sci. Adv., 2022, 3(3/4), 113—145 |
54 | Chen C., Wang X., Wang R., Waterhouse G. I. N., Xu Z., J. Future Foods, 2024, 4(4), 309—323 |
55 | Guo Z., Wu X., Jayan H., Yin L., Xue S., El⁃Seedi H. R., Zou X., Food Chem., 2023, 434, 137469 |
56 | Chen Y., An Q., Teng K., Liu C., Sun F., Li G., Chem. Asian J., 2023, 18(4), e202201194 |
57 | Li Y., Jiang G., Wan Y., Dauda S. A., Pi F., Talanta, 2024, 276, 126283 |
58 | Aziz K. H. H., Mustafa F. S., Omer K. M., Hama S., Hamarawf R. F., Rahman K. O., RSC Adv., 2023, 13(26), 17595—17610 |
59 | Lafuente M., Marchi S. D., Urbiztondo M., Pastoriza⁃Santos I., Pérez⁃Juste I., Santamaría J., Mallada R., Pina M., ACS Sens., 2021, 6(6), 2241—2251 |
60 | Tsygankov V. Y., Water Res., 2019, 161, 43—53 |
61 | Li R., Chen M., Yang H., Hao N., Liu Q., Peng M., Wang L., Hu Y., Chen X., Anal. Chem., 2021, 93(10), 4657—4665 |
62 | Wang J., Zhang J. Y., Zhu W. J., Qi B., Wang J. P., Gao G. G., Fan L. L., Liu H., J. Mater. Chem. C, 2023, 11(8), 3050—3058 |
63 | Zhang J., Huang H., Song G., Huang K., Luo Y., Liu Q., He X., Cheng N., Biosens. Bioelectron., 2022, 202, 114003 |
64 | Chen M., Luo W., Liu Q., Hao N., Zhu Y., Liu M., Wang L., Yang H., Chen X., Anal. Chem., 2018, 90(22), 13647—13654 |
65 | Gao J., Zhao C., Zhang Z., Li G., Analyst, 2017, 142(16), 2936—2944 |
66 | Fang X., Ma J., Gu C., Xiong W., Jiang T., Sens. Actuators B: Chem., 2023, 378, 133176 |
67 | Li X., Sun L., Xu B., Dai L., Xiao Y., Ding Y., Liu Q., Meng M., Xi R., Guo L., Yin Y., Sens. Actuators B: Chem., 2023, 385, 133710 |
68 | Zhang Q., Ma R., Zhang Y., Zhao J., Wang Y., Xu Z., ACS Sens., 2023, 8(2), 875—883 |
69 | Zhao X., Zhao S., Song Z. L., Zhang X., Zhang S., Song W., Chen Z., Sens. Actuators B: Chem., 2021, 331, 129373 |
70 | Liang X., Zhang P., Ma M., Yang T., Zhao X., Zhang R., Jing M., Song R., Wang L., Fan J., Nano Res., 2022, 15(4), 3487—3495 |
71 | Wang F., Sun N., Li Q., Yang J., Yang X., Liu D., J. Am. Chem. Soc., 2022, 145(2), 919—928 |
72 | Warren A. D., Kwong G. A., Wood D. K., Lin K. Y., Bhatia S. N., Proc. Natl. Acad. Sci. USA, 2014, 111(10), 3671—3676 |
73 | Liu Y., Zhu W., Hua J., Shen A., Nanoscale Adv., 2021, 3, 6568—6579 |
74 | Lu K., Zhu X. Y., Li Y., Gu N., J. Mater. Chem. B, 2023, 11(24), 5272—5300 |
75 | Yin Y., Li Q., Ma S., Liu H., Dong B., Yang J., Liu D., Anal. Chem., 2017, 89(3), 1551—1557 |
76 | Bi Y., Di H., Zeng E., Li Q., Li W., Yang J., Liu D., Anal. Chem., 2020, 92(14), 9574—9582 |
77 | Gao X., Yin Y., Wu H., Hao Z., Li J., Wang S., Liu Y., Anal. Chem., 2021, 93(3), 1569—1577 |
78 | Li M., Wang J. Y., Chen Q. Q., Lin L. H., Radjenovic P., Zhang H., Luo S. H., Tian Z. Q., Li J. F., Anal. Chem., 2019, 91(23), 15025—15031 |
79 | Deriu C., Thakur S., Tammaro O., Fabris L., Nanoscale Adv., 2023, 5(8), 2132—2166 |
80 | Son J., Kim G. H., Lee Y., Lee C., Cha S., Nam J., J. Am. Chem. Soc., 2022, 144(49), 22337—22351 |
81 | Wang X., Zeng J., Sun Q., Yang J., Xiao Y., Zhuo Z., Yan B., Li Y., Sens. Actuators B: Chem., 2021, 343, 130084 |
[1] | 张禹, 陈龙, 王中才, 胡广, 徐东, 盛全康, 陈奥, 陈韶云, 胡成龙, 陈建. 表面增强拉曼光谱快速测定尿液中的葡萄糖[J]. 高等学校化学学报, 2024, 45(9): 20240215. |
[2] | 秦海敬, 贺乾军, 徐敏敏, 袁亚仙, 姚建林. 离子液体中PMBA脱羧反应及界面水影响的电化学SERS研究[J]. 高等学校化学学报, 2024, 45(1): 20230349. |
[3] | 赵幻希, 李卓, 赵孟雅, 田璐, 肖禹圣, 王震寰, 越皓, 修洋. 能量分辨质谱区分与检测人参皂苷同分异构体20(S)-Rf和Rg1[J]. 高等学校化学学报, 2023, 44(4): 20220576. |
[4] | 陈嘉敏, 曲孝章, 齐国华, 徐蔚青, 金永东, 徐抒平. SERS纳米探针对电刺激过程中细胞内产生活性氧的检测[J]. 高等学校化学学报, 2022, 43(6): 20220033. |
[5] | 薛谨, 曹小卫, 刘依帆, 王敏. 纸质空心金纳米笼SERS传感器的制备及对非小细胞肺癌患者痰液中miRNAs的快速高灵敏检测[J]. 高等学校化学学报, 2021, 42(8): 2393. |
[6] | 陈峰, 程娜, 赵健伟, 宋易恬, 孙燕燕, 娄鑫梨, 童夏燕. 纳米颗粒银层的电沉积机理及SERS效应[J]. 高等学校化学学报, 2021, 42(6): 1891. |
[7] | 潘菁, 徐敏敏, 袁亚仙, 姚建林. 基于表面增强拉曼光谱快速检测纺织品禁用染料[J]. 高等学校化学学报, 2021, 42(12): 3716. |
[8] | 白翠婷, 岳仁叶, 罗列高, 马楠. 基于双色荧光传感器的癌细胞成像及microRNA定量检测[J]. 高等学校化学学报, 2020, 41(6): 1252. |
[9] | 李文帅, 武国瑞, 张茜菁, 岳爱琴, 杜维俊, 赵晋忠, 刘定斌. 基于拉曼光谱的细菌检测研究进展[J]. 高等学校化学学报, 2020, 41(5): 872. |
[10] | 张辉, 张晨杰, 徐敏敏, 袁亚仙, 姚建林. SERS-HPLC联用技术对邻氨基苯硫酚与邻碘苯甲酰氯反应的监测[J]. 高等学校化学学报, 2020, 41(11): 2496. |
[11] | 张怡萌, 张慧欣, 刘洋. 外泌体生物分析及其临床应用研究进展[J]. 高等学校化学学报, 2020, 41(11): 2306. |
[12] | 韩东来,李博珣,杨硕,闫永胜,杨丽丽,刘洋,李春香. Fe3O4@Au核-壳纳米复合材料的制备及对农药福美双的SERS检测研究[J]. 高等学校化学学报, 2019, 40(10): 2067. |
[13] | 冯微, 王博蔚, 郑艳, 姜洋. 金纳米粒子簇的制备及表面增强拉曼光谱[J]. 高等学校化学学报, 2018, 39(9): 1875. |
[14] | 张璐涛, 周光明, 罗丹, 陈蓉. 表面增强拉曼光谱快速检测蜂蜜中的金霉素残留[J]. 高等学校化学学报, 2018, 39(8): 1662. |
[15] | 佟倜, 赵洋洋, 付义林, 单桂晔. 以Au/Cu纳米棒为基底的肺腺癌组织的特征表面增强拉曼光谱研究[J]. 高等学校化学学报, 2017, 38(9): 1536. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||