高等学校化学学报 ›› 2024, Vol. 45 ›› Issue (11): 20240073.doi: 10.7503/cjcu20240073
收稿日期:
2024-02-10
出版日期:
2024-11-10
发布日期:
2024-04-17
通讯作者:
毕红燕
E-mail:hybi@shou.edu.cn
基金资助:
ZUO Chunqian, XU Ruirui, BI Hongyan()
Received:
2024-02-10
Online:
2024-11-10
Published:
2024-04-17
Contact:
BI Hongyan
E-mail:hybi@shou.edu.cn
Supported by:
摘要:
食物过敏是机体免疫系统对某些食物的异常反应, 在世界范围内引起了广泛关注. 食物过敏通常是由免疫球蛋白E或免疫细胞介导的. 食品中所包含的致敏蛋白(过敏原)是导致食物过敏的主要因素之一, 对过敏原的检测和鉴定对于确保食品安全至关重要. 水产品作为人类重要的蛋白质来源, 是人们日常饮食中不可或缺的一部分, 对水产品中过敏原的检测非常必要. 本综述简述了近年来鱼类和贝类等水产品中过敏原检测的研究进展, 对常见的过敏原、 过敏原检测方法和技术、 当前研究中存在的挑战及未来的发展趋势进行了总结和展望. 目前, 食品中常见过敏原的检测方法依然存在检测效率和准确性低、 成本昂贵等局限性, 将不同技术方法相结合, 建立高效、 准确、 低成本的过敏原检测方法仍是该研究领域发展的重要趋势.
中图分类号:
TrendMD:
左春倩, 许瑞瑞, 毕红燕. 水产品中过敏原检测的研究进展. 高等学校化学学报, 2024, 45(11): 20240073.
ZUO Chunqian, XU Ruirui, BI Hongyan. Research Progress of Allergen Detection in Aquatic Products. Chem. J. Chinese Universities, 2024, 45(11): 20240073.
Commonly consumed aquatic product | Major allergen | Commonly consumed aquatic product | Major allergen |
---|---|---|---|
Fish | Parvalbumin(PV) | Crab | Tropomyosin(TM) |
Collagen⁃I | Arginine kinase(AK) | ||
Enolase | Sarcoplasmic calcium⁃binding protein(SCP) | ||
Aldolase | Triose phosphate isomerase | ||
Aldehyde phosphate dehydrogenase(APDH) | Filament protein C | ||
Shrimp | Tropomyosin(TM) | Scallops | Tropomyosin(TM) |
Arginine kinase(AK) | Oysters | Tropomyosin(TM) | |
Myosin light chain(MLC) | Arginine kinase(AK) | ||
Sarcoplasmic calcium⁃binding protein(SCP) | Sarcoplasmic calcium⁃binding | ||
Pyruvate kinase | protein(SCP) | ||
Hemocyanin | Conch | Tropomyosin(TM) | |
Paramyosin(PM) |
Table 1 Common allergens found in some common aquatic products
Commonly consumed aquatic product | Major allergen | Commonly consumed aquatic product | Major allergen |
---|---|---|---|
Fish | Parvalbumin(PV) | Crab | Tropomyosin(TM) |
Collagen⁃I | Arginine kinase(AK) | ||
Enolase | Sarcoplasmic calcium⁃binding protein(SCP) | ||
Aldolase | Triose phosphate isomerase | ||
Aldehyde phosphate dehydrogenase(APDH) | Filament protein C | ||
Shrimp | Tropomyosin(TM) | Scallops | Tropomyosin(TM) |
Arginine kinase(AK) | Oysters | Tropomyosin(TM) | |
Myosin light chain(MLC) | Arginine kinase(AK) | ||
Sarcoplasmic calcium⁃binding protein(SCP) | Sarcoplasmic calcium⁃binding | ||
Pyruvate kinase | protein(SCP) | ||
Hemocyanin | Conch | Tropomyosin(TM) | |
Paramyosin(PM) |
Technique | Advantage | Disadvantage | LOD |
---|---|---|---|
DNA⁃based methods | High accuracy and sensitivity, possibility to achieve on⁃site detection, multiplicity | Sensitivity and specificity depend significantly on DNA fragments of target allergenic foods, indirect detection | Shrimp allergen tropomyosin 3.2 pg(DNA)[ Crustaceans 1 pg(DNA) or 10 mg/kg[ |
ELISA | High sensibility, commercialization, validation test | Matrix interference, ensitive to some processing condition, relatively low efficiency | Raw mollusk 0.1—0.5[ Thermal processing mollusk 0.1 mg/kg[ Fish allergen 0.5 ng/mL[ |
Immunological methods | High specificity, high sensitivity, simple operation, low cost | Interference by antigen⁃antibody binding reactions, difficulty in antibody preparation, cross⁃reactivity | Fish parvalbumin 2 ng/mL[ Ovalbumin 0.05 μg/mL[ Protomyosin 0.5 μg/mL[ sarcoplasmic calcium⁃binding protein 0.05 μg/mL[ |
Biosensor | Quick response, high⁃throughput, portability, avoidance of cross⁃contamination | Slow response, extrinsic biological interfe-rence, high cost | Tropomyosin 1.8 μg/mL[ Protomyosin 77 ng/mL[ |
Mass Spectroscopy | Multiplex detection, high accuracy and reproducibility, no cross⁃reactivity problems | Requirements for specialized personnel | — |
Multi technology integration | High sensitivity, high efficiency | High cost, high technical requirements for operation | — |
Table 2 Comparison of allergen detection methods in various aquatic products
Technique | Advantage | Disadvantage | LOD |
---|---|---|---|
DNA⁃based methods | High accuracy and sensitivity, possibility to achieve on⁃site detection, multiplicity | Sensitivity and specificity depend significantly on DNA fragments of target allergenic foods, indirect detection | Shrimp allergen tropomyosin 3.2 pg(DNA)[ Crustaceans 1 pg(DNA) or 10 mg/kg[ |
ELISA | High sensibility, commercialization, validation test | Matrix interference, ensitive to some processing condition, relatively low efficiency | Raw mollusk 0.1—0.5[ Thermal processing mollusk 0.1 mg/kg[ Fish allergen 0.5 ng/mL[ |
Immunological methods | High specificity, high sensitivity, simple operation, low cost | Interference by antigen⁃antibody binding reactions, difficulty in antibody preparation, cross⁃reactivity | Fish parvalbumin 2 ng/mL[ Ovalbumin 0.05 μg/mL[ Protomyosin 0.5 μg/mL[ sarcoplasmic calcium⁃binding protein 0.05 μg/mL[ |
Biosensor | Quick response, high⁃throughput, portability, avoidance of cross⁃contamination | Slow response, extrinsic biological interfe-rence, high cost | Tropomyosin 1.8 μg/mL[ Protomyosin 77 ng/mL[ |
Mass Spectroscopy | Multiplex detection, high accuracy and reproducibility, no cross⁃reactivity problems | Requirements for specialized personnel | — |
Multi technology integration | High sensitivity, high efficiency | High cost, high technical requirements for operation | — |
1 | Ni J., Friedman H., Boyd B. C., McGurn A., Babinski P., Markossian T., Dugas L. R., BMC Pediatr., 2019, 19 (1), 1—8 |
2 | Paramesh H., Indian J. Pediatr., 2018, 85(4), 284—294 |
3 | Monaci L., De Angelis E., Montemurro N., Pilolli R., TrAC Trend. Anal. Chem., 2018, 106, 21—36 |
4 | Yu W., Freeland D. M. H., Nadeau K. C., Nat. Rev. Immunol., 2016, 16(12), 751—765 |
5 | Sampson A. H., O'Mahony L., Burks W. A., Plaut M., Lack G., Akdis C. A., J. Aller. Clin. Immun., 2018, 141(1), 11—19 |
6 | Crespo J. F., Beatriz C., Food Chem., 2023, 411, 135500—135500 |
7 | Zhang M., Wu P., Wu J., Ping J., Wu J., TrAC Trend. Anal. Chem., 2019, 114, 278—292 |
8 | Davis C. M., Gupta R. S., Aktas O. N., Diaz V., Kamath S. D., Lopata A. L., J. Aller. Cl. Imm⁃Pract., 2020, 8(1), 37—44 |
9 | Xu J., Ye Y., Ji J., Sun J., Sun X., Crit. Rev. Food Sci., 2022, 62(25), 6887—6907 |
10 | Eischeid A. C., J. Sci. Food Agr., 2019, 99(5), 2641—2645 |
11 | Dubiela P., Kabasser S., Smargiasso N., Geiselhart S., Bublin M., Hafner C., Mazzucchelli G., Sci. Rep., 2018, 8(1), 11366 |
12 | Nugraha R., Kamath S. D., Johnston E., Karnaneedi S., Ruethers T., Lopata A. L., Front. Immunol., 2019, 10, 2676 |
13 | Johnston E. B., Kamath S. D., Iyer S. P., Pratap K., Karnaneedi S., Taki A. C., Nugraha R., Schaeffer P. M., Rolland J. M., O’Hehir R. E., Mol. Immunol., 2019, 112, 330—337 |
14 | Wai H. M., Middelveld R., Thörnqvist V., Ballardini N., Nilsson E., Strömquist J., Nilsson L., Ahlstedt S., Protudjer J. L. P., World Allergy Organ., 2019, 12(9), 100061 |
15 | Ekezie F. G. C., Cheng J. H., Sun D. W., Trends Food Sci. Tech., 2018, 74, 12—25 |
16 | Sena⁃Torralba A., Pallás⁃Tamarit Y., Morais S., Maquieira Á., TrAC Trend. Anal. Chem., 2020, 132, 116050 |
17 | Holzhauser T., Johnson P., Hindley J. P., O'Connor G., Chan C. H., Costa J., Fæste C. K., Hirst B. J., Lambertini F., Miani M., Robert M. C., Röder M., Ronsmans S., Bugyi Z., Tömösközi S., Flanagan S. D., Food Chem. Toxicol., 2020, 145, 111709 |
18 | Suh S. M., Kim M. J., Kim H. I., Kim H. J., Kim H. Y., Food Chem., 2020, 317, 126451 |
19 | Blaschke V. M., Tran T. U., Naneh M., Zagon J., Winkel M., Food Control, 2023, 146, 109517. |
20 | Blaschke V., Berten A., Sprenger H., Zagon J., Winkel M., J. Agric. Food Chem., 2023, 71(31), 12029—12042 |
21 | Kim M. J., Kim H. I., Kim J. H., Suh S. M., Kim H. Y., Food Sci. Biotechnol., 2019, 28(2), 591—597 |
22 | Soroka M., Wasowicz B. A. O., Rymaszewska A. A. O., Electronic., 2021, 2073—4409 |
23 | Huang T., Li L., Liu X., Chen Q., Fang X., Kong J., Draz M. S., Cao H., Anal. Methods, 2020, 12(46), 5551—5561 |
24 | Sheu S. C., Yu M. T., Lien Y. Y., Lee M. S., Food Chem., 2020, 332, 127389 |
25 | Zhang Y., Yu Y., Song C., Li Y., Xiong W., Ge Y., J. Food Saf. Food Qual., 2019, 10 (7), 1804—1810 |
26 | Madrid R., García⁃García A., Cabrera P., González I., Martín R., García T., Foods, 2021, 10(2), 440 |
27 | Ruethers T., Taki A. C., Khangurha J., Roberts J., Buddhadasa S., Clarke D., Hedges C. E., Campbell D. E., Kamath S. D., Lopata A. L., J. Sci. Food Agr., 2020, 100(12), 4353—4363 |
28 | Liang J., Taylor S. L., Baumert J., Lee N. A., Food Chem., 2022, 396, 133656 |
29 | Tsai C. L., Chen I. N., Chen Y. T., Food Chem., 2023, 427, 136732 |
30 | Dasanayaka B. P., Zhao J., Zhang J., Huang Y., Khan M. U., Lin H., Li Z., Anal. Biochem., 2021, 635, 114448 |
31 | Sule R., Rivera G., Gomes A. V., BioTechniques, 2023, 75 (3), 99—114 |
32 | Cosme J., Spínola⁃Santos A., Bartolomé B., Pastor⁃Vargas C., Branco⁃Ferreira M., Pereira⁃Santos M., Pereira⁃Barbosa M., J. investig. allergol. clin. immunol., 2019, 29(2), 139—141 |
33 | Nihei M., Nakajima Y., Horino S., Kondo Y., Miura K., Pediatr. Int., 2022, 64 (1), e15163 |
34 | Ruethers T., Taki A. C., Karnaneedi S., Nie S., Kalic T., Dai D., Daduang S., Leeming M., Williamson N. A., Breiteneder H., Mehr S. S., Kamath S. D., Campbell D. E., Lopata A. L., Allergy, 2020, 76(5), 1443—1453 |
35 | Ruethers T., Taki A. C., Nugraha R., Cao T. T., Koeberl M., Kamath S. D., Williamson N. A., O'Callaghan S., Nie S., Mehr S. S., Cannpbell D. E., Lopata A. L., Allergy, 2019, 74(7), 1352—1363 |
36 | Nugraha R., Ruethers T., Taki A. C., Johnston E. B., Karnaneedi S., Kamath S. D., Lopata A. L., Foods, 2022, 11(3), 404 |
37 | Zhang M., Li M., Zhao Y., Xu N., Peng L., Wang Y., Wei X., Food Res. Int., 2021, 142, 110102 |
38 | Li M. Y., Development of Gold Magnetic Immunochromatographic Test Strips for Small Albumin, a Major Allergen in Fish, Shanghai Normal University, Shanghai, 2019 |
李梦银. 鱼类主要过敏原小清蛋白金磁免疫层析试纸条的研制. 上海: 上海师范大学, 2019 | |
39 | Xu J., Ye Y., Ji J., Sun J., Sun X., Crit. Rev. Food Sci. Nutr., 2022, 62(25), 6887—6907 |
40 | Li R., Zhang Y., Zhao J., Wang Y., Wang H., Zhang Z., Lin H., Li Z., J. Food Compos. Anal., 2022, 114, 104776 |
41 | Huang Y., Li R., Zhu W., Zhao J., Wang H., Zhang Z., Lin H., Li W., Li Z., Food Chem., 2024, 440, 138275 |
42 | Wu Y., Wang Y., Wang H., Li Y., Li Z., J. Food Saf. Qual., 2020, 11(12), 3783—3788 |
43 | Angulo⁃Ibáñez A., Eletxigerra U., Lasheras X., Campuzano S., Merino S., Anal. Chim. Acta, 2019, 1079, 94—102 |
44 | Zhou J., Wang Y., Zhou C., Zheng L., Fu L., Food Control, 2023, 144, 109380 |
45 | Wang Y., Li L., Li H., Peng Y., Fu L., Food Control, 2022, 132, 108552 |
46 | Zhang Y. X., Wu Q. P., Sun M., Zhang J. M., Mo S. P., Wang J., Wei X. H., Bai J. L., Sensor. Actuat. B: Chem., 2018, 263, 43—49 |
47 | Bianco M., Ventura G., Calvano C. D., Losito I., Cataldi T. R. I., Proteomics 2023, 23(23/24), e2200427 |
48 | Wu Y., Yao K., Yang Y., Wu X., Zhang J., Jin, Y., Xing Y., Niu Y., Jiang Q., Dai C., Food Chem. 2024, 439, 138170 |
49 | Chen Y. X., He X. R., Yang S. Q., Huan F., Li D. X., Yang Y., Chen G. X., Liu G. M., J. Agr. Food Chem., 2023, 71(24), 9508—9518 |
50 | Zhao X., Lu J., Long S., Soko W. C., Qin Q., Qiao L., Bi H., J. Agr. Food Chem., 2021, 69(43), 12909—12918 |
51 | Zhao X., Bi H., J. Agr. Food Chem., 2022, 70(24), 7525—7534 |
52 | Wang L., Bi H., Anal., 2022, 147(18), 4063—4072 |
53 | Lin F., Soko W. C., Xie J., Bi H., J. Agr. Food Chem., 2023, 71(36), 13546—13553 |
54 | Radomirović M., Gligorijević N., Stanić⁃Vučinić D., Rajković A., Ćirković Veličković T., Int. J. Mol. Sci., 2023, 24(20), 15410 |
55 | Luan H., Lu J., Li Y., Xu C., Shi W., Lu Y., Food Chem., 2023, 414, 135686 |
56 | Bowler A. L., Ozturk S., Rady A., Watson N., Sensors, 2022, 22(19), 7239 |
57 | Srisomsap C., Nonthawong K., Chokchaichamnankit D., Svasti J., Phiriyangkul P., Food Biosci., 2023, 54, 102803 |
58 | Zhang X., Li Y., Tao Y., Wang Y., Xu C., Lu Y., Food Chem., 2021, 337, 127986 |
59 | Eischeid A. C., Stadig S. R., Rallabhandi P., Food Addit. Contam. Part A, 2021, 38(4), 563—572 |
60 | Flicker S., Zettl I., Tillib S. V., Front. Immunol., 2020, 11, 576255 |
61 | Sharma N., Patiyal S., Dhall A., Pande A., Arora C., Raghava G. P. S., Brief. Bioinform., 2021, 22(4), 1—12 |
62 | Sheng K., Jiang H., Fang Y., Wang L., Jiang D., Trends Food Sci. Tech., 2022, 121, 93—104 |
[1] | 张禹, 陈龙, 王中才, 胡广, 徐东, 盛全康, 陈奥, 陈韶云, 胡成龙, 陈建. 表面增强拉曼光谱快速测定尿液中的葡萄糖[J]. 高等学校化学学报, 2024, 45(9): 20240215. |
[2] | 郑德论, 张锐龙. 基于p-n异质结CuO/TiO2复合物高效的载流子分离能力构建超灵敏AFP光电化学分析[J]. 高等学校化学学报, 2024, 45(8): 20240183. |
[3] | 龚文朋, 周林楠. 3,5-二硝基苯甲酸功能化的金属有机框架CAU-10-NH-DNBA荧光检测硫化氢[J]. 高等学校化学学报, 2024, 45(8): 20240069. |
[4] | 刘星雨, 张晓晶, 向婷婷, 陈士欣, 马硕, 邵慧敏, 崔博, 夏春龙, 李岩, 布乃顺, 李丛. 含硫多孔芳香框架材料的制备及超灵敏检测同步去除汞的双重性能[J]. 高等学校化学学报, 2024, 45(7): 20240138. |
[5] | 肖航, 王小燕, 邓兆佳, 廖文静, 谢文菁, 彭汉勇. 核酸等温扩增技术在病毒检测中的应用[J]. 高等学校化学学报, 2024, 45(7): 20240139. |
[6] | 李林, 马静, 许畅琳, 陈彤瑶, 郭衡瑶, 李紫悠, 武文鑫. 室温驱动腐植酸钠基碳纳米簇用于荧光比色检测银离子和温度传感[J]. 高等学校化学学报, 2024, 45(6): 20230510. |
[7] | 张明峰, 吴博, 侯光昊, 周蕾, 王学重. 用超声衰减谱测量层状双金属氢氧化物粒度分布的方法[J]. 高等学校化学学报, 2024, 45(3): 20230463. |
[8] | 冀超, 李文, 张丽荣, 华佳, 刘云凌. 一例Eu-MOF材料的构筑及对Fe3+与硝基芳香族爆炸物的荧光检测性能[J]. 高等学校化学学报, 2024, 45(2): 20230455. |
[9] | 陈晓萍, 王旭潭, 刘宁, 汪庆祥, 倪建聪, 杨伟强, 林振宇. MOFs基微流控电化学芯片对多种重金属离子的实时在线检测[J]. 高等学校化学学报, 2024, 45(2): 20230395. |
[10] | 续红妹, 王梁臣, 闵乾昊. 面向小分子检测的MALDI MS基质研究进展[J]. 高等学校化学学报, 2024, 45(11): 20240285. |
[11] | 曹婷, 舒伟康, 万晶晶. 等离子体复合材料辅助小分子代谢物的质谱半定量分析及鉴定[J]. 高等学校化学学报, 2024, 45(11): 20240325. |
[12] | 曹忠, 郭佩弦, 薛书蕾, 肖忠良, 谭淑琪, 亢璇, 冯泽猛, 印遇龙, 马天骥. 肽适体修饰纳米孔道对L⁃精氨酸的灵敏检测[J]. 高等学校化学学报, 2023, 44(6): 20220758. |
[13] | 王日, 边超, 谢勇, 韩明杰, 李洋, 夏善红. 基于二硫化钼和钴基金属有机骨架的痕量汞离子电化学传感器[J]. 高等学校化学学报, 2023, 44(4): 20220719. |
[14] | 方鑫, 赵瑞奇, 莫婧, 王雅芬, 翁小成. 检测核酸表观遗传修饰的测序方法[J]. 高等学校化学学报, 2023, 44(3): 20220342. |
[15] | 贺胤铭, 孔素东, 林建国, 谢敏浩, 程靓. N4-乙酰胞苷RNA检测技术的研究进展[J]. 高等学校化学学报, 2023, 44(3): 20220319. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||