高等学校化学学报 ›› 2021, Vol. 42 ›› Issue (2): 633.doi: 10.7503/cjcu20200711

• 研究论文 • 上一篇    下一篇

新型石墨化氮化碳/锡/氮掺杂碳复合物的制备及储钠性能

刘志刚1,李家宝1,杨剑1,马浩1,王赪胤1,郭鑫2,汪国秀2   

  1. 1.扬州大学化学化工学院, 创新材料与能源研究院, 扬州 225002
    2.悉尼科技大学清洁能源中心, 悉尼 2007, 澳大利亚
  • 收稿日期:2020-09-24 出版日期:2021-02-10 发布日期:2020-12-28
  • 基金资助:
    国家自然科学基金(21375116);江苏省优势学科资助

Preparation of a Novel g-C3N4/Sn/N-doped Carbon Composite for Sodium Storage

LIU Zhigang1, LI Jiabao1, YANG Jian1, MA Hao1, WANG Chengyin1(), GUO Xin2(), WANG Guoxiu2()   

  1. 1.Institute for Innovative Materials and Energy,School of Chemistry and Chemical Engineering,Yangzhou University,Yangzhou 225002,China
    2.Centre for Clean Energy Technology,Faculty of Science,University of Technology Sydney,Sydney 2007,Australia
  • Received:2020-09-24 Online:2021-02-10 Published:2020-12-28
  • Contact: WANG Chengyin,GUO Xin,WANG Guoxiu E-mail:wangcy@yzu.edu.cn;xin.guo@uts.edu.au;Guoxiu.Wang@uts.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(21375116);the Priority Academic Program Development of Jiangsu Higher Education Institutions, China

摘要:

钠离子电池锡负极因具有较高的理论容量(847 mA·h/g)、 高电导率和合适的工作电位而备受关注. 但锡基负极材料在循环过程中会发生巨大的结构变化, 进而导致活性材料粉化失活和比容量的快速下降. 本文成功制备了基于石墨氮化碳(g-C3N4)、 聚多巴胺衍生的氮掺杂碳(NC)和Sn纳米颗粒的复合物(g-C3N4/Sn/NC), 其中Sn纳米颗粒包埋在石墨氮化碳和氮掺杂碳中. 在此多层分级结构中, g-C3N4和NC的引入可以显著加速电子/离子的传输及电池反应动力学, 从而有助于Sn和钠离子之间的合金化反应; 此外, 这种复合结构有助于保持电极材料的结构稳定性, 进而可以获得优异的储钠性能. 作为钠离子电池负极材料, g-C3N4/Sn/NC在0.5 A/g电流密度下经历100次循环, 可逆容量可以达到450.7 mA·h/g; 在1.0 A/g电流密度下, 比容量为388.3 mA·h/g; 此外, 在1.0 A/g电流密度下, 经过400次循环后其比容量依旧能达到363.3 mA·h/g.

关键词: 石墨氮化碳, 锡纳米颗粒, 氮掺杂碳, 储钠负极, 钠离子电池

Abstract:

Sodium-ion batteries(SIBs) based on Sn-based anodes have attracted increasing attention due to their high theoretical capacity(847 mA·h/g), high electrical conductivity and suitable operation potential. Unfortunately, the huge structural change upon cycling often causes particle pulverization and rapid capacity decay. In this work, ultrafine Sn nanoparticles with dual protection from graphitic carbon nitride(g-C3N4) and polydopamine derived N-doped carbon(g-C3N4/Sn/NC) were successfully fabricated through a designed strategy. Generally, the introduction of g-C3N4 and NC can dramatically accelerate the transport of electrons/ions as well as the reaction dynamics, thus contributing to the alloying reaction between Sn and Na+. Importantly, the ultrafine Sn as well as the dual buffering matrices can efficiently maintain the integrity of electrode upon cycling, guaranteeing the superior electrochemical performance. Benefitting from the structural advantages inhe-rited from the ultrafine Sn nanoparticles and dual protection scaffolds, the as-obtained g-C3N4/Sn/NC displays excellent sodium storage performances, with high reversible capacity(450.7 mA·h/g at 0.5 A/g after 100 cycles), remarkable rate capability(388.3 mA·h/g at 1.0 A/g) and stable long-term cycling stability(363.3 mA·h/g after 400 cycles at 1.0 A/g).

Key words: g-C3N4, Sn nanoparticles, N-Doped carbon, Sodium-storage anode, Sodium-ion battery

中图分类号: 

TrendMD: