高等学校化学学报 ›› 2020, Vol. 41 ›› Issue (10): 2239.doi: 10.7503/cjcu20200333
潘一骁1, 李艳稳1, 韩佳宏1, 赵浩强1, 冯宇2, 丁相元1, 徐立进1, 范青华2, 时茜3
收稿日期:
2020-06-08
出版日期:
2020-10-10
发布日期:
2020-10-08
基金资助:
PAN Yixiao1, LI Yanwen1, HAN Jiahong1, ZHAO Haoqiang1, FENG Yu2, DING Xiangyuan1, XU Lijin1(), FAN Qinghua2(
), SHI Qian3
Received:
2020-06-08
Online:
2020-10-10
Published:
2020-10-08
Contact:
XU Lijin,FAN Qinghua
E-mail:20050062@ruc.edu.cn;fanqh@iccas.ac.cn
Supported by:
摘要:
报道了一种利用价廉易得的邻苯二胺衍生物与α-酮酸酯经环化/钌催化的亚胺和酰胺氢化串联反应一锅法制备1,2,3,4-四氢喹喔啉的方法. 该方法使用原位生成的Ru(acac)3/Triphos配合物和HBF4共催化剂组成的催化体系, 高效制备了一系列2-取代的1,2,3,4-四氢喹喔啉, 官能团耐受性良好. 在较低的氢气压力和不使用助催化剂的条件下, 反应可停留在只生成3,4-二氢喹喔啉酮产物阶段. 反应机理研究表明, 钌催化剂仅用于还原亚胺和酰胺部分, 而布朗斯台德酸助催化剂的选择对于酰胺部分去氧氢化至关重要. 研究表明, 布朗斯台德酸助催化剂通过活化酰胺部分参与催化过程.
中图分类号:
TrendMD:
潘一骁, 李艳稳, 韩佳宏, 赵浩强, 冯宇, 丁相元, 徐立进, 范青华, 时茜. 环化及亚胺/酰胺部分氢化一锅法串联反应合成1,2,3,4⁃四氢喹喔啉. 高等学校化学学报, 2020, 41(10): 2239.
PAN Yixiao, LI Yanwen, HAN Jiahong, ZHAO Haoqiang, FENG Yu, DING Xiangyuan, XU Lijin, FAN Qinghua, SHI Qian. Synthesis of 1,2,3,4-Tetrahydroquinoxalines Through a One-pot Tandem Reaction Involving Cyclization and Hydrogenation of Imine and Amide Moieties. Chem. J. Chinese Universities, 2020, 41(10): 2239.
Compd. | Appearance | m. p./℃ | Yield(%) | HRMS(calcd.), m/z[M+H]+ |
---|---|---|---|---|
3aa | Light yellow soild | 71—72 | 88 | 149.1077(149.1073) |
3ab | Light yellow soild | 67—69 | 92 | 163.1226(163.1230) |
3ac | Brownyellow soild | 66—67 | 93 | 177.1384(177.1386) |
3ad | Brown solid | 73—75 | 91 | 177.1382(177.1386) |
3ae | Brown solid | 58—59 | 90 | 191.1549(191.1543) |
3af | Light yellow soild | 69—70 | 87 | 191.1556(191.1543) |
3ag | Light yellow soild | 82—83 | 85 | 191.1549(191.1543) |
3ah | Light yellow soild | 74—76 | 88 | 219.1859(219.1856) |
3ai | Light yellow soild | 105—106 | 72 | 217.1703(217.1699) |
3aj | Yellow oil | — | 86 | 225.1377(225.1386) |
3ak | Paleyellow oil | — | 75 | 203.0794(203.0791) |
3al | Light yellow soild | 121—123 | 81 | 211.1234(211.1230) |
3am | Light yellow soild | 120—121 | 86 | 225.1381(225.1386) |
3an | Light yellow soild | 63—65 | 84 | 241.1334(241.1336) |
3ao | White solid | 118—120 | 80 | 287.1548(287.1543) |
3ap | Light yellow soild | 103—104 | 77 | 229.1132(229.1136) |
3aq | Light yellow soild | 104—105 | 83 | 245.0835(245.0840) |
3ar | Light yellow soild | 144—146 | 80 | 289.0331(289.0335) |
3as | White solid | 143—144 | 75 | 279.1109(279.1104) |
3at | Yellow oil | — | 74 | 225.1380(225.1386) |
3au | Yellow oil | — | 82 | 225.1391(225.1386) |
3av | White solid | 108—110 | 76 | 261.1377(261.1386) |
3aw | Red solid | 104—105 | 85 | 237.1377(237.1386) |
3ax | Light yellow soild | 92—95 | 88 | 135.0914(135.0917) |
3ay | Red solid | 104—105 | 65 | 121.0755(121.0760) |
3az | Yellow oil | — | 83 | 163.1234(163.1230) |
3ba | White solid | 105—106 | 91 | 177.1381(177.1386) |
3ca | White solid | 101—102 | 82 | 217.0299(217.0294) |
3da | Brown solid | 112—114 | 81 | 304.9291(304.9283) |
3ea | White solid | 131—132 | 88 | 209.1277(209.1285) |
3fa | White solid | 173—175 | 83 | 199.1226(199.1230) |
3ga | Yellow oil | — | 81 | 163.1238(163.1230) |
3ha | Colourless oil | — | 73 | 239.1547(239.1543) |
3ia | Paleyellow oil | — | 64 | 189.1282(189.1286) |
3ja | White solid | 101—102 | 72 | 149.0826(149.0822) |
3ka | White solid | 74—76 | 52 | 253.1673(253.1669) |
3la | Yellow oil | — | 61 | 155.1550(155.1543) |
3ma | Yellow oil | 101—102 | 52 | 129.1382(129.1386) |
3na | Yellow oil | — | 81 | 150.0921(150.0913) |
Table 1 Appearance, melting points, yields and HRMS data for compounds 3aa—3na
Compd. | Appearance | m. p./℃ | Yield(%) | HRMS(calcd.), m/z[M+H]+ |
---|---|---|---|---|
3aa | Light yellow soild | 71—72 | 88 | 149.1077(149.1073) |
3ab | Light yellow soild | 67—69 | 92 | 163.1226(163.1230) |
3ac | Brownyellow soild | 66—67 | 93 | 177.1384(177.1386) |
3ad | Brown solid | 73—75 | 91 | 177.1382(177.1386) |
3ae | Brown solid | 58—59 | 90 | 191.1549(191.1543) |
3af | Light yellow soild | 69—70 | 87 | 191.1556(191.1543) |
3ag | Light yellow soild | 82—83 | 85 | 191.1549(191.1543) |
3ah | Light yellow soild | 74—76 | 88 | 219.1859(219.1856) |
3ai | Light yellow soild | 105—106 | 72 | 217.1703(217.1699) |
3aj | Yellow oil | — | 86 | 225.1377(225.1386) |
3ak | Paleyellow oil | — | 75 | 203.0794(203.0791) |
3al | Light yellow soild | 121—123 | 81 | 211.1234(211.1230) |
3am | Light yellow soild | 120—121 | 86 | 225.1381(225.1386) |
3an | Light yellow soild | 63—65 | 84 | 241.1334(241.1336) |
3ao | White solid | 118—120 | 80 | 287.1548(287.1543) |
3ap | Light yellow soild | 103—104 | 77 | 229.1132(229.1136) |
3aq | Light yellow soild | 104—105 | 83 | 245.0835(245.0840) |
3ar | Light yellow soild | 144—146 | 80 | 289.0331(289.0335) |
3as | White solid | 143—144 | 75 | 279.1109(279.1104) |
3at | Yellow oil | — | 74 | 225.1380(225.1386) |
3au | Yellow oil | — | 82 | 225.1391(225.1386) |
3av | White solid | 108—110 | 76 | 261.1377(261.1386) |
3aw | Red solid | 104—105 | 85 | 237.1377(237.1386) |
3ax | Light yellow soild | 92—95 | 88 | 135.0914(135.0917) |
3ay | Red solid | 104—105 | 65 | 121.0755(121.0760) |
3az | Yellow oil | — | 83 | 163.1234(163.1230) |
3ba | White solid | 105—106 | 91 | 177.1381(177.1386) |
3ca | White solid | 101—102 | 82 | 217.0299(217.0294) |
3da | Brown solid | 112—114 | 81 | 304.9291(304.9283) |
3ea | White solid | 131—132 | 88 | 209.1277(209.1285) |
3fa | White solid | 173—175 | 83 | 199.1226(199.1230) |
3ga | Yellow oil | — | 81 | 163.1238(163.1230) |
3ha | Colourless oil | — | 73 | 239.1547(239.1543) |
3ia | Paleyellow oil | — | 64 | 189.1282(189.1286) |
3ja | White solid | 101—102 | 72 | 149.0826(149.0822) |
3ka | White solid | 74—76 | 52 | 253.1673(253.1669) |
3la | Yellow oil | — | 61 | 155.1550(155.1543) |
3ma | Yellow oil | 101—102 | 52 | 129.1382(129.1386) |
3na | Yellow oil | — | 81 | 150.0921(150.0913) |
Compd. | 1H NMR(400MHz, CDCl3), δ | 13C NMR(100.6MHz, CDCl3), δ |
---|---|---|
3aa | 6.58—6.45(m, 4H), 4.02(s, 2H), 3.51—3.26(m, 2H), 3.02—2.7(m, 1H), 1.15(dd, J=17.4, 6.5 Hz, 3H) | 134.35, 133.57, 133.13, 118.78, 118.74, 114.55, 48.21, 45.71, 19.87 |
3ab | 6.58—6.47(m, 4H), 3.42—3.35(m, 1H), 3.31(ddd, J=14.1, 6.7, 2.9 Hz, 1H), 3.08—3.04(m, 1H), 1.55—1.48(m, 2H), 1.00(t, J=7.5 Hz, 3H) | 133.41, 133.15, 118.97, 118.71, 114.60, 51.71, 46.21, 27.06, 10.03 |
3ac | 6.58—6.56(m, 2H), 6.50(dd, J=8.4, 4.1 Hz, 2H), 3.36—3.34(m, 2H), 3.08—3.03(m, 1H), 1.48—1.44(m, 4H), 0.95(td, J=6.8, 3.9 Hz, 3H) | 133.53, 133.40, 118.76, 118.61, 114.49, 114.44, 53.44, 49.99, 36.44, 18.86, 14.16 |
3ad | 6.59—6.48(m, 4H), 3.37—3.34(m, 1H), 3.10(dt, J=14.0, 6.7 Hz, 1H), 1.76—1.68(m, 1H), 0.97(ddd, J=21.7, 14.8, 6.9 Hz, 6H) | 133.87, 133.35, 118.83, 118.39, 114.37, 114.32, 56.00, 53.44, 31.03, 18.73 |
3ae | 6.59—6.58(m, 2H), 6.52—6.51(m, 2H), 3.37(d, J=8.5 Hz, 2H), 3.06(dd, J=17.8, 6.9 Hz, 1H), 1.51—1.37(m, 6H), 0.94(dd, J=9.1, 5.0 Hz, 3H) | 134.37, 133.58, 133.15, 118.80, 118.76, 114.56, 50.24, 46.66, 33.98, 31.68, 27.82, 21.05, 14.20 |
3af | 6.66—6.64(m, 4H), 3.48(s, 2H), 3.44(qd, J=7.8, 2.8 Hz, 1H), 3.38(dd, J=10.7, 2.8 Hz, 1H), 3.10—3.05(m, 1H), 1.78(dp, J=13.3, 6.7 Hz, 1H), 1.45—1.30(m, 3H), 0.99(m, 6H) | 133.57, 133.51, 118.76, 118.69, 114.60, 114.49, 48.18, 47.09, 43.41, 24.53, 23.24, 22.59 |
3ag | 6.58—6.48(m, 4H), 3.64(m, 1H), 3.36—3.31(m, 1H), 3.15—3.09(m, 2H), 0.97(s, 9H) | 134.55, 133.34, 118.83, 118.22, 114.30, 114.24, 59.00, 42.50, 32.78, 26.03 |
3ah | 6.50(dq, J=29.5, 4.6 Hz, 4H), 3.62(s, 1H), 3.36—3.30(m, 1H), 3.04(dd, J=11.1, 8.4 Hz, 1H), 1.48—1.30(m, 10H), 0.89(t, J=6.5 Hz, 3H) | 133.58, 133.46, 118.72, 118.59, 114.47, 114.42, 50.28, 46.72, 34.33, 31.82, 29.41, 25.65, 22.65, 14.12 |
3ai | 6.57—6.56(m, 2H), 6.49—6.47(m, 2H), 3.67(s, 2H), 3.38(dd, J=10.4, 2.3 Hz, 1H), 3.19—3.09(m, 2H), 1.89—1.67(m, 5H), 1.43—1.40(m, 1H), 1.29—1.02(m, 6H) | 133.76, 133.43, 118.69, 118.28, 114.25, 55.12, 43.90, 40.65, 29.12, 28.88, 26.40, 26.12, 26.08 |
3aj | 7.34—7.20(m, 5H), 6.58—6.39(m, 4H), 3.59—3.57(m, 1H), 3.37(dd, J=10.8, 2.8 Hz, 1H), 3.15(dd, J=10.7, 7.1 Hz, 1H), 2.85—2.71(m, 1H), 2.69—2.67(m, 1H) | 138.05, 133.29, 133.07, 129.33, 128.73, 126.67, 118.87, 118.79, 114.64, 51.29, 46.29, 40.58 |
3ak | 7.92(d, J=8.0 Hz, 1H), 7.73(t, J=7.3 Hz, 1H), 7.43(t, J=7.9 Hz, 2H), 4.38(t, J=4.8 Hz, 1H), 3.44(tt, J=17.0, 8.5 Hz, 2H) | 152.19, 134.22, 133.98, 130.36, 124.65, 116.36, 56.51, 55.40(q, JF—C=105.4 Hz) |
3al | 7.39—7.25(m, 5H), 6.64—6.56(m, 4H), 4.48(dd, J=8.2, 3.1 Hz, 1H), 3.47(dd, J=11.0, 3.1 Hz, 1H), 3.32(dd, J=11.0, 8.2 Hz, 1H) | 134.14, 132.83, 128.66, 127.91, 127.02, 118.91, 118.79, 114.71, 114.43, 53.47, 49.16 |
3am | 7.29—7.17(m, 4H), 6.65—6.56(m, 4H), 4.47(dd, J=8.2, 3.0 Hz, 1H), 3.87(t, J=18.3 Hz, 2H), 3.46(dd, J=11.0, 3.1 Hz, 1H), 3.34(dd, J=11.0, 8.2 Hz, 1H), 2.36(s, 3H) | 137.62, 129.31, 126.88, 118.86, 118.71, 114.66, 114.38, 54.43, 49.19, 21.13 |
3an | 7.34—7.27(m, 2H), 6.94—6.90(m, 2H), 6.66—6.57(m, 4H), 4.46(ddd, J=11.3, 8.2, 3.0 Hz, 1H), 3.83(s, 3H), 3.45—3.41(m, 1H), 3.34—3.29(m, 1H) | 159.30, 134.22, 133.93, 132.85, 128.12, 118.84, 118.75, 114.65, 114.41, 114.01, 55.35, 54.10, 49.29 |
3ao | 7.59(ddd, J=5.8, 5.1, 4.3 Hz, 4H), 7.46—7.25(m, 4H), 6.66—6.51(m, 5H), 4.54(dd, J=8.0, 3.0 Hz, 1H), 3.51(dd, J=11.0, 3.1 Hz, 1H), 3.39(dd, J=11.0, 8.1 Hz, 1H) | 140.90, 132.81, 128.80, 127.38, 127.10, 118.96, 118.82, 114.74, 114.45, 54.43, 49.07 |
3ap | 7.36—7.02(m, 4H), 6.65—6.56(m, 4H), 4.47(dd, J=8.1, 3.0 Hz, 1H), 3.43(dd, J=11.0, 3.1 Hz, 1H), 3.27(dd, J=11.0, 8.1 Hz, 1H) | 150.80, 142.99, 130.47, 129.65, 129.17, 128.54(d, JF—C=7.6 Hz), 118.95, 116.17(d, JF—C=21.6 Hz), 115.38, 114.71, 54.03, 49.18 |
3aq | 7.34—7.29(m, 4H), 6.65—6.56(m, 4H), 4.47(dd, J=8.0, 3.1 Hz, 1H), 3.44(dd, J=11.1, 3.1 Hz, 1H), 3.26(dd, J=11.1, 8.0 Hz, 1H) | 140.44, 133.79, 132.75, 128.80, 128.36, 119.03, 118.99, 114.77, 114.53, 54.09, 49.00 |
3ar | 7.53—7.50(m, 2H), 7.30—7.28(m, 2H), 6.69—6.59(m, 4H), 4.48(dd, J=8.0, 3.0 Hz, 1H), 3.47(dt, J=4.8, 2.4 Hz, 1H), 3.32(ddd, J=11.1, 8.0, 5.6 Hz, 1H) | 141.01, 133.78, 132.77, 131.77, 128.74, 121.69, 119.05, 119.01, 114.79, 114.56, 54.16, 48.95 |
3as | 7.66—7.51(m, 4H), 6.71—6.60(m, 4H), 4.59(dd, J=7.7, 3.0 Hz, 1H), 3.96(d, J=8.7 Hz, 2H), 3.50(dd, J=11.1, 3.1 Hz, 1H), 3.32(dd, J=11.1, 7.7 Hz, 1H) | 146.08 , 133.60, 132.75(d, JF—C=32.3 Hz), 127.88, 127.36, 126.09, 125.60(q, JF—C=4.3 Hz), 119.15, 119.11, 114.87, 114.60, 54.37, 48.77 |
3at | 7.50—7.20(m, 4H), 6.70—6.61(m, 4H), 4.76(dd, J=8.2, 2.9 Hz, 1H), 3.83(d, J=7.3 Hz, 1H), 3.48(dd, J=11.1, 3.0 Hz, 1H), 3.28(dt, J=21.6, 10.8 Hz, 1H), 2.44(s, 3H) | 139.55, 135.27, 134.46, 132.84, 130.47, 127.50, 126.66, 126.54, 118.91, 118.79, 114.72, 114.54, 77.42, 50.57, 47.81, 19.26 |
Compd. | 1H NMR(400MHz, CDCl3), δ | 13C NMR(100.6MHz, CDCl3), δ |
3au | 7.26—7.11(m, 4H), 6.64—6.54(m, 4H), 4.42(dd, J=8.3, 3.0 Hz, 1H), 3.88—3.85(m, 2H), 3.42(dd, J=11.0, 3.1 Hz, 1H), 3.30(dd, J=11.0, 8.3 Hz, 1H), 2.28—2.35(s, 3H) | 141.73, 138.35, 134.19, 132.85, 128.67, 128.55, 127.67, 124.09, 118.88, 118.77, 114.70, 114.44, 54.70, 49.21, 21.48 |
3av | 8.01—7.95(m, 1H), 7.89—7.78(m, 1H), 7.55—7.53(m, 1H), 7.51—7.47(m, 4H), 6.67—6.58(m, 4H), 5.30(dd, J=7.9, 2.9 Hz, 1H), 3.65(m, 2H), 3.62(dd, J=11.2, 3.0 Hz, 1H), 3.44—3.39(m,1H) | 137.19, 134.38, 132.98, 130.48, 129.72, 129.16, 128.21, 126.36, 125.74, 125.67, 124.12, 122.61, 119.08, 118.87, 114.88, 114.67, 50.71, 48.15 |
3aw | 7.40—7.20(m, 6H), 6.65—6.49(m, 6H), 4.50(dt, J=11.5, 5.8 Hz, 1H), 3.46(dd, J=11.0, 3.1 Hz, 1H), 3.33(dd, J=11.0, 8.2 Hz, 1H) | 133.05, 131.75, 127.57, 126.82, 125.93, 117.81, 117.69,117.26, 113.61, 113.35, 113.24, 53.68, 52.39 |
3ax | 6.63—6.58(m, 2H), 6.54—6.51(m, 2H), 3.64(s, 2H), 3.44(s, 4H) | 133.71, 118.82, 114.71, 42.43 |
3ay | 6.68(dd, J=4.0, 1.7 Hz, 2H), 6.55(dd, J=5.8, 3.2 Hz, 2H), 3.76(s, 2H) | 137.16, 117.25, 113.56, 57.58 |
3az | 6.76—6.69(m, 2H), 6.44—6.37(m, 2H), 3.51—3.45(m, 1H), 3.31—3.27(m, 1H), 3.04—2.99(m, 1H), 1.84—1.79(m,1H), 1.64—1.58(m,1H), 1.18(d, J=3.5 Hz, 3H) | 121.65, 120.69, 120.12, 114.96, 52.67, 45.91, 39.48, 19.75 |
3ba | 6.37(d, J=4.9 Hz, 2H), 3.55(m, 2H), 3.04—3.00(m, 1H), 2.13(s, 6H), 1.20(dd, J=21.9, 8.0 Hz, 3H) | 130.55, 130.09, 126.53, 115.49, 47.73, 45.16, 20.16, 19.00, 17.99 |
3ca | 6.56(t, J=3.7 Hz, 2H), 3.53—3.49(m, 1H), 3.35(dd, J=10.8, 3.0 Hz, 1H), 3.03(dd, J=10.7, 8.1 Hz, 1H), 1.23(d, J=6.3 Hz, 3H) | 133.16, 132.85, 120.28, 114.68, 114.58, 47.57, 45.36, 19.68 |
3da | 6.55(d, J=3.7 Hz, 2H), 3.55—3.49(m, 1H), 3.36(dd, J=10.8, 3.0 Hz, 1H), 3.03(dd, J=10.7, 8.1 Hz, 1H), 1.22(d, J=6.3 Hz, 3H) | 133.14, 132.86, 118.28, 114.70, 114.58, 47.57, 45.32, 19.76 |
3ea | 6.25(d, J=4.9 Hz, 2H), 4.04(d, J=7.1 Hz, 6H), 3.37(s, 2H), 3.20(d, J=8.8 Hz, 1H), 2.88(d, J=14.6 Hz, 1H), 1.09(d, J=6.3 Hz, 3H) | 139.55, 139.09, 125.53, 100.49, 59.51, 47.73, 45.20, 17.99 |
3fa | 7.46(dd, J=5.9, 3.3 Hz, 2H), 7.12(dd, J=6.2, 3.3 Hz, 2H), 6.80(s, 2H), 3.64—3.59(m, 1H), 3.40(d, J=3.1 Hz, 1H), 3.10(d, J=8.5 Hz, 1H), 1.24(d, J=3.8 Hz, 3H) | 134.79, 134.45, 129.06, 125.18, 125.11, 122.57, 122.48, 107.95, 107.72, 47.86, 45.75, 19.74 |
3ga | 6.68—6.64(m, 1H), 6.62—6.53(m, 2H), 6.48(dd, J=7.5, 1.4 Hz, 1H), 3.61(s, 1H), 3.31(m, 1H), 3.15(dd, J=10.6, 2.4 Hz, 1H), 2.94(t, J=8.8 Hz, 1H), 2.85(s, 3H), 1.16(d, J=6.3 Hz, 3H) | 129.42, 127.00, 118.90, 118.28, 113.58, 111.65, 57.06, 45.76, 39.20, 20.17 |
3ha | 7.34—7.22(m, 5H), 6.55—6.52(m, 4H), 4.72(s, 1H), 4.43(s, 1H), 3.58—3.55(m, 1H), 3.27—3.23(m, 1H), 3.11—3.07(m, 1H), 1.17(d, J=6.3 Hz, 2H) | 138.75, 134.91, 133.67, 128.55, 126.96, 126.85, 119.13, 117.59, 113.94, 111.49, 55.26, 55.14, 45.28, 19.89 |
3ia | 6.69—6.51(m, 4H), 5.93—5.85(m, 1H), 5.28—5.17(m, 2H), 3.93(td, J=20.8, 16.7, 8.7 Hz, 2H), 3.57(d, J=6.2 Hz, 1H), 3.24(dd, J=10.7, 2.6 Hz, 1H), 3.04(dd, J=13.1, 6.0 Hz, 1H), 1.20(s, 3H) | 135.79, 134.48, 133.65, 119.15, 118.15, 117.55, 113.97, 111.53, 59.71, 55.15, 45.27, 19.91 |
3ja | 3.48—3.44(m, 1H), 3.32—3.28(m, 1H), 3.01—2.96(m, 1H), 1.18(d, J=6.3 Hz, 3H) | 120.35, 120.27, 114.70, 114.58, 47.57, 45.35, 19.65 |
3ka | 7.13—7.07(m,10H), 3.80(d, J=8.9 Hz, 1H), 3.67(d, J=8.9 Hz, 1H), 3.19—3.10(m, 2H), 2.74—2.69(m, 1H), 1.13(d, J=6.2 Hz, 3H) | 160.46, 159.36, 138.02, 137.82, 129.67, 129.60, 128.22, 128.20, 128.10, 128.00, 52.28, 51.03, 19.03 |
3la | 3.06—3.19(m, 2H), 2.53—2.34(m, 3H), 1.89(m, 4H), 1.45—1.26(m, 4H), 1.20(d, 3H, J=6.3 Hz) | 62.42, 58.62, 54.48, 53.44, 31.70, 31.10, 25.16, 23.65, 20.89 |
3ma | 2.68—2.65(m, 1H), 2.59—2.58(m, 2H), 2.49—2.44(m, 2H), 2.32—2.26(m, 2H), 2.03(s, 3H), 1.80(s, 3H), 0,88(d, J=5.4 Hz, 3H) | 57.45, 53.47, 51.72, 45.73, 39.72, 38.05, 16.74 |
3na | 6.77—6.49(m, 4H), 4.28(m, 1H), 3.69—3.61(m, 1H), 3.50—3.46(m, 1H), 1.28(dd, J=17.4, 6.3 Hz, 3H) | 143.75, 132.15, 121.20, 118.88, 116.20, 113.54, 45.86, 19.87 |
Table 2 1H NMR and 13C NMR data for compounds 3aa—3na
Compd. | 1H NMR(400MHz, CDCl3), δ | 13C NMR(100.6MHz, CDCl3), δ |
---|---|---|
3aa | 6.58—6.45(m, 4H), 4.02(s, 2H), 3.51—3.26(m, 2H), 3.02—2.7(m, 1H), 1.15(dd, J=17.4, 6.5 Hz, 3H) | 134.35, 133.57, 133.13, 118.78, 118.74, 114.55, 48.21, 45.71, 19.87 |
3ab | 6.58—6.47(m, 4H), 3.42—3.35(m, 1H), 3.31(ddd, J=14.1, 6.7, 2.9 Hz, 1H), 3.08—3.04(m, 1H), 1.55—1.48(m, 2H), 1.00(t, J=7.5 Hz, 3H) | 133.41, 133.15, 118.97, 118.71, 114.60, 51.71, 46.21, 27.06, 10.03 |
3ac | 6.58—6.56(m, 2H), 6.50(dd, J=8.4, 4.1 Hz, 2H), 3.36—3.34(m, 2H), 3.08—3.03(m, 1H), 1.48—1.44(m, 4H), 0.95(td, J=6.8, 3.9 Hz, 3H) | 133.53, 133.40, 118.76, 118.61, 114.49, 114.44, 53.44, 49.99, 36.44, 18.86, 14.16 |
3ad | 6.59—6.48(m, 4H), 3.37—3.34(m, 1H), 3.10(dt, J=14.0, 6.7 Hz, 1H), 1.76—1.68(m, 1H), 0.97(ddd, J=21.7, 14.8, 6.9 Hz, 6H) | 133.87, 133.35, 118.83, 118.39, 114.37, 114.32, 56.00, 53.44, 31.03, 18.73 |
3ae | 6.59—6.58(m, 2H), 6.52—6.51(m, 2H), 3.37(d, J=8.5 Hz, 2H), 3.06(dd, J=17.8, 6.9 Hz, 1H), 1.51—1.37(m, 6H), 0.94(dd, J=9.1, 5.0 Hz, 3H) | 134.37, 133.58, 133.15, 118.80, 118.76, 114.56, 50.24, 46.66, 33.98, 31.68, 27.82, 21.05, 14.20 |
3af | 6.66—6.64(m, 4H), 3.48(s, 2H), 3.44(qd, J=7.8, 2.8 Hz, 1H), 3.38(dd, J=10.7, 2.8 Hz, 1H), 3.10—3.05(m, 1H), 1.78(dp, J=13.3, 6.7 Hz, 1H), 1.45—1.30(m, 3H), 0.99(m, 6H) | 133.57, 133.51, 118.76, 118.69, 114.60, 114.49, 48.18, 47.09, 43.41, 24.53, 23.24, 22.59 |
3ag | 6.58—6.48(m, 4H), 3.64(m, 1H), 3.36—3.31(m, 1H), 3.15—3.09(m, 2H), 0.97(s, 9H) | 134.55, 133.34, 118.83, 118.22, 114.30, 114.24, 59.00, 42.50, 32.78, 26.03 |
3ah | 6.50(dq, J=29.5, 4.6 Hz, 4H), 3.62(s, 1H), 3.36—3.30(m, 1H), 3.04(dd, J=11.1, 8.4 Hz, 1H), 1.48—1.30(m, 10H), 0.89(t, J=6.5 Hz, 3H) | 133.58, 133.46, 118.72, 118.59, 114.47, 114.42, 50.28, 46.72, 34.33, 31.82, 29.41, 25.65, 22.65, 14.12 |
3ai | 6.57—6.56(m, 2H), 6.49—6.47(m, 2H), 3.67(s, 2H), 3.38(dd, J=10.4, 2.3 Hz, 1H), 3.19—3.09(m, 2H), 1.89—1.67(m, 5H), 1.43—1.40(m, 1H), 1.29—1.02(m, 6H) | 133.76, 133.43, 118.69, 118.28, 114.25, 55.12, 43.90, 40.65, 29.12, 28.88, 26.40, 26.12, 26.08 |
3aj | 7.34—7.20(m, 5H), 6.58—6.39(m, 4H), 3.59—3.57(m, 1H), 3.37(dd, J=10.8, 2.8 Hz, 1H), 3.15(dd, J=10.7, 7.1 Hz, 1H), 2.85—2.71(m, 1H), 2.69—2.67(m, 1H) | 138.05, 133.29, 133.07, 129.33, 128.73, 126.67, 118.87, 118.79, 114.64, 51.29, 46.29, 40.58 |
3ak | 7.92(d, J=8.0 Hz, 1H), 7.73(t, J=7.3 Hz, 1H), 7.43(t, J=7.9 Hz, 2H), 4.38(t, J=4.8 Hz, 1H), 3.44(tt, J=17.0, 8.5 Hz, 2H) | 152.19, 134.22, 133.98, 130.36, 124.65, 116.36, 56.51, 55.40(q, JF—C=105.4 Hz) |
3al | 7.39—7.25(m, 5H), 6.64—6.56(m, 4H), 4.48(dd, J=8.2, 3.1 Hz, 1H), 3.47(dd, J=11.0, 3.1 Hz, 1H), 3.32(dd, J=11.0, 8.2 Hz, 1H) | 134.14, 132.83, 128.66, 127.91, 127.02, 118.91, 118.79, 114.71, 114.43, 53.47, 49.16 |
3am | 7.29—7.17(m, 4H), 6.65—6.56(m, 4H), 4.47(dd, J=8.2, 3.0 Hz, 1H), 3.87(t, J=18.3 Hz, 2H), 3.46(dd, J=11.0, 3.1 Hz, 1H), 3.34(dd, J=11.0, 8.2 Hz, 1H), 2.36(s, 3H) | 137.62, 129.31, 126.88, 118.86, 118.71, 114.66, 114.38, 54.43, 49.19, 21.13 |
3an | 7.34—7.27(m, 2H), 6.94—6.90(m, 2H), 6.66—6.57(m, 4H), 4.46(ddd, J=11.3, 8.2, 3.0 Hz, 1H), 3.83(s, 3H), 3.45—3.41(m, 1H), 3.34—3.29(m, 1H) | 159.30, 134.22, 133.93, 132.85, 128.12, 118.84, 118.75, 114.65, 114.41, 114.01, 55.35, 54.10, 49.29 |
3ao | 7.59(ddd, J=5.8, 5.1, 4.3 Hz, 4H), 7.46—7.25(m, 4H), 6.66—6.51(m, 5H), 4.54(dd, J=8.0, 3.0 Hz, 1H), 3.51(dd, J=11.0, 3.1 Hz, 1H), 3.39(dd, J=11.0, 8.1 Hz, 1H) | 140.90, 132.81, 128.80, 127.38, 127.10, 118.96, 118.82, 114.74, 114.45, 54.43, 49.07 |
3ap | 7.36—7.02(m, 4H), 6.65—6.56(m, 4H), 4.47(dd, J=8.1, 3.0 Hz, 1H), 3.43(dd, J=11.0, 3.1 Hz, 1H), 3.27(dd, J=11.0, 8.1 Hz, 1H) | 150.80, 142.99, 130.47, 129.65, 129.17, 128.54(d, JF—C=7.6 Hz), 118.95, 116.17(d, JF—C=21.6 Hz), 115.38, 114.71, 54.03, 49.18 |
3aq | 7.34—7.29(m, 4H), 6.65—6.56(m, 4H), 4.47(dd, J=8.0, 3.1 Hz, 1H), 3.44(dd, J=11.1, 3.1 Hz, 1H), 3.26(dd, J=11.1, 8.0 Hz, 1H) | 140.44, 133.79, 132.75, 128.80, 128.36, 119.03, 118.99, 114.77, 114.53, 54.09, 49.00 |
3ar | 7.53—7.50(m, 2H), 7.30—7.28(m, 2H), 6.69—6.59(m, 4H), 4.48(dd, J=8.0, 3.0 Hz, 1H), 3.47(dt, J=4.8, 2.4 Hz, 1H), 3.32(ddd, J=11.1, 8.0, 5.6 Hz, 1H) | 141.01, 133.78, 132.77, 131.77, 128.74, 121.69, 119.05, 119.01, 114.79, 114.56, 54.16, 48.95 |
3as | 7.66—7.51(m, 4H), 6.71—6.60(m, 4H), 4.59(dd, J=7.7, 3.0 Hz, 1H), 3.96(d, J=8.7 Hz, 2H), 3.50(dd, J=11.1, 3.1 Hz, 1H), 3.32(dd, J=11.1, 7.7 Hz, 1H) | 146.08 , 133.60, 132.75(d, JF—C=32.3 Hz), 127.88, 127.36, 126.09, 125.60(q, JF—C=4.3 Hz), 119.15, 119.11, 114.87, 114.60, 54.37, 48.77 |
3at | 7.50—7.20(m, 4H), 6.70—6.61(m, 4H), 4.76(dd, J=8.2, 2.9 Hz, 1H), 3.83(d, J=7.3 Hz, 1H), 3.48(dd, J=11.1, 3.0 Hz, 1H), 3.28(dt, J=21.6, 10.8 Hz, 1H), 2.44(s, 3H) | 139.55, 135.27, 134.46, 132.84, 130.47, 127.50, 126.66, 126.54, 118.91, 118.79, 114.72, 114.54, 77.42, 50.57, 47.81, 19.26 |
Compd. | 1H NMR(400MHz, CDCl3), δ | 13C NMR(100.6MHz, CDCl3), δ |
3au | 7.26—7.11(m, 4H), 6.64—6.54(m, 4H), 4.42(dd, J=8.3, 3.0 Hz, 1H), 3.88—3.85(m, 2H), 3.42(dd, J=11.0, 3.1 Hz, 1H), 3.30(dd, J=11.0, 8.3 Hz, 1H), 2.28—2.35(s, 3H) | 141.73, 138.35, 134.19, 132.85, 128.67, 128.55, 127.67, 124.09, 118.88, 118.77, 114.70, 114.44, 54.70, 49.21, 21.48 |
3av | 8.01—7.95(m, 1H), 7.89—7.78(m, 1H), 7.55—7.53(m, 1H), 7.51—7.47(m, 4H), 6.67—6.58(m, 4H), 5.30(dd, J=7.9, 2.9 Hz, 1H), 3.65(m, 2H), 3.62(dd, J=11.2, 3.0 Hz, 1H), 3.44—3.39(m,1H) | 137.19, 134.38, 132.98, 130.48, 129.72, 129.16, 128.21, 126.36, 125.74, 125.67, 124.12, 122.61, 119.08, 118.87, 114.88, 114.67, 50.71, 48.15 |
3aw | 7.40—7.20(m, 6H), 6.65—6.49(m, 6H), 4.50(dt, J=11.5, 5.8 Hz, 1H), 3.46(dd, J=11.0, 3.1 Hz, 1H), 3.33(dd, J=11.0, 8.2 Hz, 1H) | 133.05, 131.75, 127.57, 126.82, 125.93, 117.81, 117.69,117.26, 113.61, 113.35, 113.24, 53.68, 52.39 |
3ax | 6.63—6.58(m, 2H), 6.54—6.51(m, 2H), 3.64(s, 2H), 3.44(s, 4H) | 133.71, 118.82, 114.71, 42.43 |
3ay | 6.68(dd, J=4.0, 1.7 Hz, 2H), 6.55(dd, J=5.8, 3.2 Hz, 2H), 3.76(s, 2H) | 137.16, 117.25, 113.56, 57.58 |
3az | 6.76—6.69(m, 2H), 6.44—6.37(m, 2H), 3.51—3.45(m, 1H), 3.31—3.27(m, 1H), 3.04—2.99(m, 1H), 1.84—1.79(m,1H), 1.64—1.58(m,1H), 1.18(d, J=3.5 Hz, 3H) | 121.65, 120.69, 120.12, 114.96, 52.67, 45.91, 39.48, 19.75 |
3ba | 6.37(d, J=4.9 Hz, 2H), 3.55(m, 2H), 3.04—3.00(m, 1H), 2.13(s, 6H), 1.20(dd, J=21.9, 8.0 Hz, 3H) | 130.55, 130.09, 126.53, 115.49, 47.73, 45.16, 20.16, 19.00, 17.99 |
3ca | 6.56(t, J=3.7 Hz, 2H), 3.53—3.49(m, 1H), 3.35(dd, J=10.8, 3.0 Hz, 1H), 3.03(dd, J=10.7, 8.1 Hz, 1H), 1.23(d, J=6.3 Hz, 3H) | 133.16, 132.85, 120.28, 114.68, 114.58, 47.57, 45.36, 19.68 |
3da | 6.55(d, J=3.7 Hz, 2H), 3.55—3.49(m, 1H), 3.36(dd, J=10.8, 3.0 Hz, 1H), 3.03(dd, J=10.7, 8.1 Hz, 1H), 1.22(d, J=6.3 Hz, 3H) | 133.14, 132.86, 118.28, 114.70, 114.58, 47.57, 45.32, 19.76 |
3ea | 6.25(d, J=4.9 Hz, 2H), 4.04(d, J=7.1 Hz, 6H), 3.37(s, 2H), 3.20(d, J=8.8 Hz, 1H), 2.88(d, J=14.6 Hz, 1H), 1.09(d, J=6.3 Hz, 3H) | 139.55, 139.09, 125.53, 100.49, 59.51, 47.73, 45.20, 17.99 |
3fa | 7.46(dd, J=5.9, 3.3 Hz, 2H), 7.12(dd, J=6.2, 3.3 Hz, 2H), 6.80(s, 2H), 3.64—3.59(m, 1H), 3.40(d, J=3.1 Hz, 1H), 3.10(d, J=8.5 Hz, 1H), 1.24(d, J=3.8 Hz, 3H) | 134.79, 134.45, 129.06, 125.18, 125.11, 122.57, 122.48, 107.95, 107.72, 47.86, 45.75, 19.74 |
3ga | 6.68—6.64(m, 1H), 6.62—6.53(m, 2H), 6.48(dd, J=7.5, 1.4 Hz, 1H), 3.61(s, 1H), 3.31(m, 1H), 3.15(dd, J=10.6, 2.4 Hz, 1H), 2.94(t, J=8.8 Hz, 1H), 2.85(s, 3H), 1.16(d, J=6.3 Hz, 3H) | 129.42, 127.00, 118.90, 118.28, 113.58, 111.65, 57.06, 45.76, 39.20, 20.17 |
3ha | 7.34—7.22(m, 5H), 6.55—6.52(m, 4H), 4.72(s, 1H), 4.43(s, 1H), 3.58—3.55(m, 1H), 3.27—3.23(m, 1H), 3.11—3.07(m, 1H), 1.17(d, J=6.3 Hz, 2H) | 138.75, 134.91, 133.67, 128.55, 126.96, 126.85, 119.13, 117.59, 113.94, 111.49, 55.26, 55.14, 45.28, 19.89 |
3ia | 6.69—6.51(m, 4H), 5.93—5.85(m, 1H), 5.28—5.17(m, 2H), 3.93(td, J=20.8, 16.7, 8.7 Hz, 2H), 3.57(d, J=6.2 Hz, 1H), 3.24(dd, J=10.7, 2.6 Hz, 1H), 3.04(dd, J=13.1, 6.0 Hz, 1H), 1.20(s, 3H) | 135.79, 134.48, 133.65, 119.15, 118.15, 117.55, 113.97, 111.53, 59.71, 55.15, 45.27, 19.91 |
3ja | 3.48—3.44(m, 1H), 3.32—3.28(m, 1H), 3.01—2.96(m, 1H), 1.18(d, J=6.3 Hz, 3H) | 120.35, 120.27, 114.70, 114.58, 47.57, 45.35, 19.65 |
3ka | 7.13—7.07(m,10H), 3.80(d, J=8.9 Hz, 1H), 3.67(d, J=8.9 Hz, 1H), 3.19—3.10(m, 2H), 2.74—2.69(m, 1H), 1.13(d, J=6.2 Hz, 3H) | 160.46, 159.36, 138.02, 137.82, 129.67, 129.60, 128.22, 128.20, 128.10, 128.00, 52.28, 51.03, 19.03 |
3la | 3.06—3.19(m, 2H), 2.53—2.34(m, 3H), 1.89(m, 4H), 1.45—1.26(m, 4H), 1.20(d, 3H, J=6.3 Hz) | 62.42, 58.62, 54.48, 53.44, 31.70, 31.10, 25.16, 23.65, 20.89 |
3ma | 2.68—2.65(m, 1H), 2.59—2.58(m, 2H), 2.49—2.44(m, 2H), 2.32—2.26(m, 2H), 2.03(s, 3H), 1.80(s, 3H), 0,88(d, J=5.4 Hz, 3H) | 57.45, 53.47, 51.72, 45.73, 39.72, 38.05, 16.74 |
3na | 6.77—6.49(m, 4H), 4.28(m, 1H), 3.69—3.61(m, 1H), 3.50—3.46(m, 1H), 1.28(dd, J=17.4, 6.3 Hz, 3H) | 143.75, 132.15, 121.20, 118.88, 116.20, 113.54, 45.86, 19.87 |
Compd. | Appearance | m. p./℃ | Yield(%) | HRMS, m/z[M+H]+ |
---|---|---|---|---|
4aa | White solid | 136—136 | 92 | 163.0869(163.0866) |
4ab | Light yellow soild | 77—78 | 90 | 177.1029(177.1022) |
4ad | Light yellow soild | 121—123 | 87 | 191.1181(191.1179) |
4aj | Light yellow soild | 188—189 | 94 | 239.1177(239.1179) |
4al | White solid | 79—81 | 94 | 225.1017(225.1022) |
4aw | White solid | 134—136 | 89 | 251.1173(251.1179) |
4ba | Light yellow soild | 125—127 | 92 | 191.1183(191.1179) |
4ay | Light yellow soild | 110—113 | 83 | 177.1028(177.1022) |
4ja | White solid | 239—240 | 85 | 163.0621(163.0614) |
4la | White solid | 115—117 | 69 | 169.1358(169.1355) |
4na | Colorless oil | — | 90 | 164.0710(164.0706) |
Table 3 Appearance, melting points, yields and HRMS data for compounds 4aa—4ya
Compd. | Appearance | m. p./℃ | Yield(%) | HRMS, m/z[M+H]+ |
---|---|---|---|---|
4aa | White solid | 136—136 | 92 | 163.0869(163.0866) |
4ab | Light yellow soild | 77—78 | 90 | 177.1029(177.1022) |
4ad | Light yellow soild | 121—123 | 87 | 191.1181(191.1179) |
4aj | Light yellow soild | 188—189 | 94 | 239.1177(239.1179) |
4al | White solid | 79—81 | 94 | 225.1017(225.1022) |
4aw | White solid | 134—136 | 89 | 251.1173(251.1179) |
4ba | Light yellow soild | 125—127 | 92 | 191.1183(191.1179) |
4ay | Light yellow soild | 110—113 | 83 | 177.1028(177.1022) |
4ja | White solid | 239—240 | 85 | 163.0621(163.0614) |
4la | White solid | 115—117 | 69 | 169.1358(169.1355) |
4na | Colorless oil | — | 90 | 164.0710(164.0706) |
Compd. | 1H NMR(400MHz, CDCl3), δ | 13C NMR(100.6MHz, CDCl3), δ |
---|---|---|
4aa | 8.46(s, 1H), 6.95—6.71(m, 4H), 4.08(m, 1H), 1.49(d, J=10.6 Hz, 1H) | 170.26, 133.92, 123.94, 121.52, 119.67, 115.44, 114.16, 51.92, 17.82 |
4ab | 7.86—7.25(m, 4H), 2.99(m, 2H), 1.89(m, 2H), 1.09(t,J=10.6 Hz, 1H) | 169.41, 133.41, 125.17, 122.16, 118.97, 116.72, 114.60, 51.71, 27.05, 10.03 |
4ad | 9.76(s, 1H), 7.29—6.67(m, 4H), 4.08(s, 1H), 3.80(s, 1H), 2.27(d,J=10.6 Hz, 1H), 1.08—1.01(dd, J=17.4, 16.3 Hz, 6H) | 168.83, 133.30, 124.88, 123.91, 118.78, 115.51, 113.39, 81.78, 30.84, 20.22, 19.04, 17.508 |
4aj | 9.97(s, 1H), 7.34—7.18(m, 5H), 6.87—6.54(m, 4H), 4.06(d, J=10.6 Hz, 1H), 3.88(s, 1H), 3.25(m, 1H), 2.86(m, 1H) | 169.28, 136.90, 132.43, 129.49, 128.98, 127.09, 125.55, 124.12, 119.60, 115.81, 114.59, 57.82, 37.57 |
4al | 7.39—7.26(m, 5H), 6.84(m, 1H), 6.63—6.55(m, 3H), 5.08(s, 1H) | 177.14, 139.12, 132.83, 129.91, 127.01, 122.91, 118.77, 115.69, 114.43, 53.47 |
4aw | 8.25—8.21(m, 1H), 7.92—7.73(m, 4H), 7.53—7.40(m, 6H), 4.42(d, J=6.3 Hz, 1H) | 169.77, 140.78, 133.06, 131.76, 127.58, 126.83, 125.93, 117.82, 117.72, 117.25, 113.61, 113.36, 113.25, 61.13 |
4ba | 6.53—6.52(m, 2H), 3.99(s, 1H), 3.78(s, 1H), 2.14(s, 6H), 1.37(d, J=6.3 Hz, 3H) | 170.44, 133.97, 126.46, 123.42, 117.79, 116.38, 51.62, 19.89, 18.87 |
4ay | 7.33—7.07(m, 4H), 3.28(m, 1H), 2.66(m, 1H), 2.28(m, 1H), 1.23(d, J=6.3 Hz, 3H) | 170.43, 138.99, 133.98, 126.47, 123.42, 117.78, 116.37, 51.62, 41.38, 23.88 |
4ja | 3.55(m, 1H), 1.61(d, J=6.3 Hz, 3H) | 151.57, 116.02, 115.70, 111.74, 100.41, 55.34, 14.36 |
4la | 3.55(m, 1H), 1.60(d, J=6.3 Hz, 3H) | 151.56, 116.02, 115.70, 111.74, 100.41, 55.34, 14.35 |
4na | 7.03—6.77(m, 4H), 3.99(m, 1H), 1.55(d, J=6.3 Hz, 3H) | 166.15, 144.54, 137.10, 123.60, 120.45, 116.38, 114.36, 50.85, 21.31 |
Table 4 1H NMR and 13C NMR data for compounds 4aa—4ya
Compd. | 1H NMR(400MHz, CDCl3), δ | 13C NMR(100.6MHz, CDCl3), δ |
---|---|---|
4aa | 8.46(s, 1H), 6.95—6.71(m, 4H), 4.08(m, 1H), 1.49(d, J=10.6 Hz, 1H) | 170.26, 133.92, 123.94, 121.52, 119.67, 115.44, 114.16, 51.92, 17.82 |
4ab | 7.86—7.25(m, 4H), 2.99(m, 2H), 1.89(m, 2H), 1.09(t,J=10.6 Hz, 1H) | 169.41, 133.41, 125.17, 122.16, 118.97, 116.72, 114.60, 51.71, 27.05, 10.03 |
4ad | 9.76(s, 1H), 7.29—6.67(m, 4H), 4.08(s, 1H), 3.80(s, 1H), 2.27(d,J=10.6 Hz, 1H), 1.08—1.01(dd, J=17.4, 16.3 Hz, 6H) | 168.83, 133.30, 124.88, 123.91, 118.78, 115.51, 113.39, 81.78, 30.84, 20.22, 19.04, 17.508 |
4aj | 9.97(s, 1H), 7.34—7.18(m, 5H), 6.87—6.54(m, 4H), 4.06(d, J=10.6 Hz, 1H), 3.88(s, 1H), 3.25(m, 1H), 2.86(m, 1H) | 169.28, 136.90, 132.43, 129.49, 128.98, 127.09, 125.55, 124.12, 119.60, 115.81, 114.59, 57.82, 37.57 |
4al | 7.39—7.26(m, 5H), 6.84(m, 1H), 6.63—6.55(m, 3H), 5.08(s, 1H) | 177.14, 139.12, 132.83, 129.91, 127.01, 122.91, 118.77, 115.69, 114.43, 53.47 |
4aw | 8.25—8.21(m, 1H), 7.92—7.73(m, 4H), 7.53—7.40(m, 6H), 4.42(d, J=6.3 Hz, 1H) | 169.77, 140.78, 133.06, 131.76, 127.58, 126.83, 125.93, 117.82, 117.72, 117.25, 113.61, 113.36, 113.25, 61.13 |
4ba | 6.53—6.52(m, 2H), 3.99(s, 1H), 3.78(s, 1H), 2.14(s, 6H), 1.37(d, J=6.3 Hz, 3H) | 170.44, 133.97, 126.46, 123.42, 117.79, 116.38, 51.62, 19.89, 18.87 |
4ay | 7.33—7.07(m, 4H), 3.28(m, 1H), 2.66(m, 1H), 2.28(m, 1H), 1.23(d, J=6.3 Hz, 3H) | 170.43, 138.99, 133.98, 126.47, 123.42, 117.78, 116.37, 51.62, 41.38, 23.88 |
4ja | 3.55(m, 1H), 1.61(d, J=6.3 Hz, 3H) | 151.57, 116.02, 115.70, 111.74, 100.41, 55.34, 14.36 |
4la | 3.55(m, 1H), 1.60(d, J=6.3 Hz, 3H) | 151.56, 116.02, 115.70, 111.74, 100.41, 55.34, 14.35 |
4na | 7.03—6.77(m, 4H), 3.99(m, 1H), 1.55(d, J=6.3 Hz, 3H) | 166.15, 144.54, 137.10, 123.60, 120.45, 116.38, 114.36, 50.85, 21.31 |
Entry | Product | Yieldb(%) | Entry | Product | Yieldb(%) |
---|---|---|---|---|---|
1 | 3aa | 96(89c) | 11 | 3ak | 75 |
2 | 3ab | 92 | 12 | 3al | 81 |
3 | 3ac | 93 | 13 | 3am | 86 |
4 | 3ad | 91 | 14 | 3an | 84 |
5 | 3ae | 90 | 15 | 3ao | 80 |
6 | 3af | 87 | 16 | 3ap | 77 |
7 | 3ag | 85 | 17 | 3aq | 83 |
8 | 3ah | 88 | 18 | 3ar | 80 |
9 | 3ai | 72 | 19 | 3as | 75 |
10 | 3aj | 86 | 20 | 3at | 74 |
Entry | Product | Yieldb(%) | Entry | Product | Yieldb(%) |
21 | 3au | 82 | 30 | 3ea | 88 |
22 | 3av | 76 | 31 | 3fa | 83 |
23 | 3aw | 85 | 32 | 3ga | 81 |
24 | 3ax | 88 | 33 | 3ha | 73 |
25 | 3ay | 65 | 34 | 3ia | 64 |
26 | 3az | 83 | 35 | 3ja | 72 |
27 | 3ba | 91 | 36 | 3ka | 52 |
28 | 3ca | 82 | 37 | 3la | 61 |
29 | 3da | 81 | 38 | 3ma | 52 |
Table 6 Reaction scope with respect to α-ketoestersa
Entry | Product | Yieldb(%) | Entry | Product | Yieldb(%) |
---|---|---|---|---|---|
1 | 3aa | 96(89c) | 11 | 3ak | 75 |
2 | 3ab | 92 | 12 | 3al | 81 |
3 | 3ac | 93 | 13 | 3am | 86 |
4 | 3ad | 91 | 14 | 3an | 84 |
5 | 3ae | 90 | 15 | 3ao | 80 |
6 | 3af | 87 | 16 | 3ap | 77 |
7 | 3ag | 85 | 17 | 3aq | 83 |
8 | 3ah | 88 | 18 | 3ar | 80 |
9 | 3ai | 72 | 19 | 3as | 75 |
10 | 3aj | 86 | 20 | 3at | 74 |
Entry | Product | Yieldb(%) | Entry | Product | Yieldb(%) |
21 | 3au | 82 | 30 | 3ea | 88 |
22 | 3av | 76 | 31 | 3fa | 83 |
23 | 3aw | 85 | 32 | 3ga | 81 |
24 | 3ax | 88 | 33 | 3ha | 73 |
25 | 3ay | 65 | 34 | 3ia | 64 |
26 | 3az | 83 | 35 | 3ja | 72 |
27 | 3ba | 91 | 36 | 3ka | 52 |
28 | 3ca | 82 | 37 | 3la | 61 |
29 | 3da | 81 | 38 | 3ma | 52 |
Entry | Product | Yieldb(%) | Entry | Product | Yieldb(%) |
---|---|---|---|---|---|
1 | 4aa | 92 | 6 | 4aw | 89 |
2 | 4ab | 90 | 7 | 4ba | 92 |
3 | 4ad | 87 | 8 | 4ay | 83 |
4 | 4aj | 94 | 9 | 4ja | 85 |
5 | 4al | 94 | 10 | 4la | 69 |
Table 7 One-pot tandem synthesis of dihydroquinoxalin-2(1H)-onesa
Entry | Product | Yieldb(%) | Entry | Product | Yieldb(%) |
---|---|---|---|---|---|
1 | 4aa | 92 | 6 | 4aw | 89 |
2 | 4ab | 90 | 7 | 4ba | 92 |
3 | 4ad | 87 | 8 | 4ay | 83 |
4 | 4aj | 94 | 9 | 4ja | 85 |
5 | 4al | 94 | 10 | 4la | 69 |
120 | Creary X., J. Org. Chem.,1987, 52(22), 5026—5030 |
121 | Ren X. Y., Du H. F., J. Am. Chem. Soc., 2016, 138(3), 810—813 |
122 | Li Y., Topf C., Cui X., Junge K., Beller M., Angew. Chem. Int. Ed., 2015, 54(17), 5196—5200 |
123 | Cui X., Li Y., Topf C., Junge K., Beller M., Angew. Chem. Int. Ed., 2015, 54(36), 10596—10599 |
124 | Cabrero⁃Antonino J. R., Sorribes I., Junge K., Beller M., Angew. Chem. Int. Ed., 2016, 55(1), 387—391 |
125 | Geilen F. M. A., Engendahl B., Harwardt A., Marquardt W., Klankermayer J., Leitner W., Angew. Chem. Int. Ed., 2010, 49(32), 5510—5514 |
126 | Beydoun K., vom Stein T., Klankermayer J., Leitner W., Angew. Chem. Int. Ed., 2013, 52(36), 9554—9557 |
127 | Li Y., Sorribes I., Yan T., Junge K., Beller M., Angew. Chem. Int. Ed.,2013, 52(46), 12156—12160 |
128 | Beydoun K., Ghattas G., Thenert K., Klankermayer J., Leitner W., Angew. Chem. Int. Ed.,2014, 53(41), 11010—11014 |
129 | Savourey S., Lefevre G., Berthet J. C., Cantat T., Chem. Commun.,2014, 50(90), 14033—14036 |
130 | Sorribes I., Cabrero⁃Antonino J. R., Vicent C., Junge K., Beller M., J. Am. Chem. Soc.,2015, 137(42), 13580—13587 |
131 | Adam R., Cabrero⁃Antonino J. R., Junge K., Jackstell R., Beller M., Angew. Chem. Int. Ed.,2016, 55(37), 11049—11053 |
132 | Cox C., Lectka T., Acc. Chem. Res.,2000, 33(12), 849—858 |
1 | Benkovic S. J., Benkovic P. A., Comfort D. R., J. Am. Chem. Soc., 1969, 91(19), 5270—5279 |
2 | Mertes M. P., Lin A. J., J. Med. Chem., 1970, 13(1), 77—82 |
3 | Jacobsen E. J., Stelzer L. S., Belonga K. L., Carter D. B., Im W. B., Sethy V. H., Tang A. H., von Voigtlander P. F., Petke J. D., J. Med. Chem., 1996, 39(19), 3820—3836 |
4 | Sikorski J. A., J. Med. Chem., 2006, 49(1), 1—22 |
5 | Ohtake Y., Naito A., Hasegawa H., Kawano K., Morizono D., Tangiguchi M., Tanka Y., Matsukwa H., Naito K., Oguma T., Ezure Y., Tsuriya Y., Bioorg. Med. Chem., 1999, 7(6), 1247—1254 |
6 | Torisu K., Kobayashi K., Iwahashi M., Nakai Y., Onoda T., Nagase T., Sugimoto I., Okada Y., Matsumoto R., Nanbu F., Ohuchida S., Nakai H., Toda M., Bioorg. Med. Chem., 2004, 12(20), 5361—5378 |
7 | Eary C. T., Jones Z. S., Groneberg R. D., Burgess L. E., Mareska D. A., Drew M. D., Blake J. F., Laird E. R.,Balachari D., O’sullivan M.,AllenA., Marsh V., Bioorg. Med. Chem. Lett., 2007, 17(9), 2608—2613 |
8 | Gluchowski C., Preparation of (2⁃Imidazolin⁃2⁃ylamino)tetrahydroquinoxalines as Adrenergic Agonists for Treatment of Glaucoma, Diarrhea, and Kidney Disorders, EP 0422878 A1, 1991⁃04⁃07 |
9 | Jones Z., Groneberg R., Drew M., Eary C. T., Inhibitors of Cholesteryl Ester Transfer Protein, US 20050282812, 2005⁃12⁃22 |
10 | Li P., Chen Y., Xia R. J., Guo T., Zhang M.., Jiang S. C., Tang X., He M., Xue W., Chem. J. Chinese Universities, 2019, 40(5), 909—917(李普, 陈英, 夏榕娇, 郭涛, 张敏, 蒋仕春, 汤旭, 贺鸣, 薛伟. 高等学校化学学报, 2019, 40(5), 909—917) |
11 | Chandrasekaran Y., Dutta G. K., Kanth B. R., Patil S., Dyes and Pigments, 2009, 83(2), 162—167 |
12 | Satam V., Rajule R., Bendre S., Bineesh P., Kanetkar V., J. Heterocycl. Chem., 2009, 46(2), 221—225 |
13 | Wojcik A., Nicolaescu R., Kamat P. V., Chandrasekaran Y., Patil S., J. Phys. Chem. A, 2010, 114(8), 2744—2750 |
14 | Massacret M., Lhoste P., Sinou D., Eur. J. Org. Chem., 1999,(1), 129—134 |
15 | NairV., Dhanya R., Rajesh C., Bhadbhade M. M., Manoj K., Org. Lett., 2004, 6(25), 4743—4745 |
16 | Abraham C. J., Paull D. H., Scerba M. T., Grebinski J. W., Lectka T., J. Am. Chem. Soc., 2006, 128(41), 13370—13371 |
17 | Merişor E., Conrad J., Klaiber I., Mika S., Beifuss U., Angew. Chem. Int. Ed., 2007, 46(18), 3353—3355 |
18 | Kim J. C., Choi H. G., Kim M. S., Ha H. J., Lee W. K., Tetrahedron, 2010, 66(40), 8108—8114 |
19 | Li J. L., Han B., Jiang K., Du W., Chen Y. C., Bioorg. Med. Chem. Lett., 2009, 19(14), 3952—3954 |
20 | Samanta K., Panda G., Org. Biomol. Chem., 2010, 8(12), 2823—2828 |
21 | Ghorai M. K., Sahoo A. K., Kumar S., Org. Lett., 2011, 13(22), 5972—5975 |
22 | Deshmukh M. S., Dasa B., Jain N., RSC Adv., 2013, 3(44), 22389—22396 |
23 | Vidal⁃Albalat A., Rodríguez S., Gonzalez F. V., Org. Lett., 2014, 16(6), 1752—1755 |
24 | Hopkins B. A., Wolfe J. P., Chem. Sci., 2014, 5(12), 4840—4844 |
25 | Anderson J. C., Campbell I. B., Campos S., Reid I. H., Rundell C. D., Shannon J., Tizzard G. J., Org. Biomol. Chem., 2016, 14(35), 8270—8277 |
26 | Marichev K. O., Takacs J. M., ACS Catal.,2016, 6(4), 2205—2210 |
27 | Wu Z. X., Wen K., Zhang J. G., Zhang W. B., Org. Lett.,2017, 19(11), 2813—2816 |
28 | Glorius F., Org. Biomol. Chem.,2005, 3(23), 4171—4175 |
29 | Zhou Y. G., Acc. Chem. Res., 2007, 40(12), 1357—1366 |
30 | Kuwano R., Heterocycles, 2008, 76(2), 909—922 |
31 | Wang D. S., Chen Q. A., Lu S. M., Zhou Y. G., Chem. Rev., 2012, 112(4),2557—2590 |
32 | Nagano T., Iimuro A., Yamaji K., Kita Y., Mashima K., Heterocycles, 2014, 88(1), 103—127 |
33 | De Selms R. C., Mosher H. S., J. Am. Chem. Soc., 1960, 82(14), 3762—3765 |
34 | Rao K. V., Jackman D. J., J. Heterocycl. Chem., 1973, 10(2), 213—215 |
35 | Armand J., Chekir K., J. Heterocycl. Chem., 1980, 17(6), 1237—1240 |
36 | Moody C. J., Pitts M. R., Synlett, 1998,(9),1029—1030 |
37 | McKinney A. M., Jackson K. R., Salvatore R. N., Savrides E. M., Edattel M. J., Gavin T., J. Heterocycl. Chem., 2005, 42(5), 1031—1034 |
38 | Bianchini C., Barbaro P., Macchi M., Meli A., Vizza F., Helv. Chim. Acta, 2001, 84(10), 2895—2923 |
39 | Zhu G., Pang K. L., Parkin G., J. Am. Chem. Soc., 2008, 130(5), 1564—1565 |
40 | Rubio M., Suarez A., Vega E., Alvarez E., Diez J., Gamasa M. P., Pizzano A., Eur. J. Inorg. Chem., 2012,(4),655—663 |
41 | Wu J., Barnard J. H., Zhang Y., Talwar D., Robertson C. M., Xiao J., Chem. Commun., 2013, 49(63), 7052—7054 |
42 | Adam R., Cabrero⁃Antonino J. R., Spannenberg A., Junge K., Jackstell R., Beller M., Angew. Chem. Int. Ed., 2017, 56(12), 3216—3220 |
43 | Murata S., Sugimoto T., Matsuura S., Heterocycles, 1987, 26(3), 763—766 |
44 | Bianchini C., Barbaro P., Scapacci G., Farnetti E., Graziani M., Organometallics, 1998, 17(15), 3308—3310 |
45 | Bianchini C., Barbaro P., Scapacci G., J. Organomet. Chem., 2001, 621(1/2), 26—32 |
46 | Cobley C. J.,Henschke J. P., Adv. Synth. Catal., 2003, 345(1/2), 195—201 |
47 | Henschke J. P., Burk M. J., Malan C. G., Herzberg D., Peterson J. A., Wildsmith A. J., Cobley C. J., Casy G., Adv. Synth. Catal., 2003, 345(1/2), 300—304 |
48 | Qiu L. Q., Kwong F. Y.,Wu J., Lam W. H., Chan S. S., Yu W. W., Li Y. M., Guo R. W., Zhou Z. Y., Chan A. S. C., J. Am. Chem. Soc., 2006, 128(17), 5955—5965 |
49 | Tang W. J., Xu L. J.,Fan Q. H., Wang J., Fan B. M., Zhou Z. Y., Lam K. H., Chan A. S. C., Angew. Chem. Int. Ed., 2009, 48(48), 9135—9138 |
50 | Mrsic N., Jerphagnon T., Minnaard A. J., Feringa B. L., de Vries J. G., Adv. Synth. Catal., 2009,351(16), 2549—2552 |
51 | Wang D. S., Zhou Y. G., Tetrahedron Lett., 2010, 51(22), 3014—3017 |
52 | Cartigny D., Nagano T., Ayad T., Genent J. P., Ohshima T., Mashima K., Ratovelomanana⁃Vidal V., Adv. Synth. Catal., 2010, 352(11/12), 1886—1891 |
53 | Chen Q. A., Wang D. S., Zhou Y. G., Duan Y., Fan H. J., Yang Y., Zhang Z., J. Am. Chem. Soc., 2011, 133(16), 6126—6129 |
54 | Urban S., Ortega N., Glorius F., Angew. Chem. Int. Ed.,2011, 50(16), 3803—3906 |
55 | Qin J., Chen F., Ding Z. Y., He Y. M., Xu L. J., Fan Q. H., Org. Lett., 2011, 13(24), 6568—6571 |
56 | Chen Q. A., Gao K., Duan Y., Ye Z. S., Shi L., Yang Y., Zhou Y. G., J. Am. Chem. Soc.,2012, 134(4), 2442—2448 |
57 | Cartigny D., Berhal F., Nagano T., Phansavath P., Ayad T., Genet J. P., Ohshima T., Mashima K., Ratovelomanana⁃Vidal V., J. Org. Chem., 2012, 77(10), 4544—4556 |
58 | Arai N., Saruwatari Y., Isobe K., Ohkuma T., Adv. Synth. Catal., 2013, 355(14/15), 2769—2774 |
59 | Fleischer S., Zhou S. L., Werkmeister S., Junge K., Beller M., Chem. Eur. J., 2013, 19(16), 4997—5003 |
60 | Zhang Z. H., Du H. F., Angew. Chem. Int. Ed., 2015, 54(2), 623—626 |
61 | Cavagnol J. C., Wiselogle F. Y., J. Am. Chem. Soc., 1947, 69(4), 795—799 |
62 | De Selms R. C., Greaves R. J., Schleigh W. R., J. Heterocycl. Chem.,1974, 11(4), 595—597 |
63 | Barbaro P., Gonsalvi L., Guerriero A., Liguori F., Green Chem.,2012, 14(11), 3211—3219 |
64 | Dell’Anna M. M., Capodiferro V. F., Malia M., Manno D., Cotugno P., Monopoli A., Mastrorilli P., Appl. Catal. A: Gen.,2014, 481, 89—95 |
65 | Wei Z. Z., Chen Y. Q., Wang J., Su D. F., Tang M. H., Mao S. J., Wang Y., ACS Catal.,2016, 6(9), 5816—5822 |
66 | Zhang Y., Zhu J., Xia Y. T., Sun X. T., Wu L., Adv. Synth. Catal.,2016, 358(19), 3039—3045 |
67 | Watanabe Y., Ohta T., Tsuji Y., Hiyoshi T., Tsuji Y., Bull. Chem. Soc. Jpn.,1984, 57(12), 2440—2444 |
68 | Parekh V., Ramsden J. A., Wills M., Tetrahedron: Asymmetry, 2010, 21(11/12), 1549—1556 |
69 | Tan J., Tang W. J., Sun Y.W., Jiang Z., Chen F., Xu L.J., Fan Q. H., Xiao J. L., Tetrahedron, 2011, 67(34), 6206—6213 |
70 | Wu J. J., Wang C., Tang W. J., Pettman A., Xiao J. L., Chem. Eur. J.,2012, 18(31), 9525—9529 |
71 | Talwar D., Li H. Y., Durham E., Xiao J. L., Chem. Eur. J.,2015, 21(14), 5370—5379 |
72 | Zhang L .J., Qiu R. Y., Xue X., Pan Y. X., Xu C. H., Li H. R., Xu L. J., Adv. Synth. Catal.,2015, 357(16/17), 3529—3537 |
73 | DellAnna M. M., Romanazzi G., Intini S., Rizzuti A., Leonelli C., Piccinni A. F., Mastrorilli P., J. Mol. Catal. A: Chem., 2015, 402, 83—91 |
74 | Vilhanova B., van Bokhoven J. A., Ranocchiari M., Adv. Synth. Catal., 2017, 359(4), 677—686 |
75 | Rueping M., Tato F., Schoepke F. R., Chem. Eur. J., 2010, 16(9), 2688—2691 |
76 | Manas M. G., Sharninghausen L. S., Balcells D., Crabtree R. H., New J. Chem., 2014, 38(4), 1694—1700 |
77 | Wang Y., Dong B. B, Wang Z. K., Cong X. F., Bi X. H., Org. Lett.,2019, 21(10), 3631—3634 |
78 | Xia Y. T., Sun X. T., Zhang L., Luo K., Wu L., Chem. Eur. J.,2016, 22(48), 17151—17155 |
79 | Xuan Q. Q., Song Q. L., Org. Lett., 2016, 18(17), 4250—4253 |
80 | Zhang X., Chen J. C., Khan R., Shen G. L., He Z. X., Zhou Y. Y., Fan B. M., Org. Biomol. Chem., 2019, 17(48), 10142—10147 |
81 | Li S. L., Meng W., Du H. F., Org. Lett., 2017, 19(10), 2604—2606 |
82 | Shi F., Tan W., Zhang H. H., Li M., Ye Q., Ma G. H., Tu S. J., Li G. G., Adv. Synth. Catal.,2013, 355(18), 3715—3726 |
83 | Liu S. S., Zhou Y. M., Sui Y. B., Liu H., Zhou H. F., Org. Chem. Front., 2017, 4(11), 2175—2178 |
84 | Fisher G. H., Whitman P. J., Schultz H. P., J. Org. Chem., 1970, 35(7), 2240—2242 |
85 | Olagbemiro T. O., Nyakutse C. A., Lajide L., Agho M. O., Chukwa C. E., Bull. Soc. Chim. Belg., 1987, 96(4), 473—480 |
86 | Arai N., Saruwatari Y., Isobe K., Ohkuma T., Adv. Synth. Catal., 2013, 355(14/15), 2769—2774 |
87 | Pan Y. X., Chen C. J., Xu X., Zhao H. Q., Han J. H., Li H. R., Xu L. J., Fan Q. H., Xiao J. L., Green Chem., 2018, 20(2), 403—411 |
88 | Werkmeister S., Junge K., Beller M., Org. Process Res. Dev.,2014, 18(2), 289—302 |
89 | Smith A. M., Whyman R., Chem. Rev., 2014, 114(10), 5477—5510 |
90 | Pritchard J., Filonenko G. A., van Putten R., Hensen E. J. M., Pidko E. A., Chem. Soc. Rev., 2015, 44(11), 3808—3833 |
91 | Zhou Y. Y., Khana R., Fan B. M., Xu L. J., Synthesis,2019, 51(12), 2491—2505 |
92 | Beamson G., Papworth A. J., Philipps C., Smith A. M., Whyman R., J. Catal., 2010, 269(1), 93—102 |
93 | Beamson G., Papworth A. J., Philipps C., Smith A. M., Whyman R., Adv. Synth. Catal., 2010, 352(5), 869—883 |
94 | Beamson G., Papworth A. J., Philipps C., Smith A. M., Whyman R., J. Catal., 2011, 278(2), 228—238 |
95 | Stein M., Breit B., Angew. Chem. Int. Ed.,2013, 52(8), 2231—2234 |
96 | Shimizu K. I., Onodera W., Touchy A. S., Siddiki S. M. A. H., Toyao T., Kon K., Chem. Select,2016, 1(4), 736—740 |
97 | Magro A. A. N., Eastham G. R., Cole⁃Hamilton D. J., Chem. Commun., 2007, (30), 3154—3156 |
98 | Coetzee J., Dodds D. L., Klankermayer J., Brosinski S., Leitner W., Slawin A. M. Z., Cole⁃Hamilton D. J., Chem. Eur. J., 2013, 19(33), 11039—11050 |
99 | vom Stein T., Meuresch M., Limper D., Schmitz M., Holscher M., Coetzee J., Cole⁃Hamilton D. J., Klankermayer J., Leitner W., J. Am. Chem. Soc., 2014, 136(38), 13217—13225 |
100 | Meuresch M., Westhues S., Leitner W., Klankermayer J., Angew. Chem. Int. Ed.,2016, 55(4), 1392—1395 |
101 | Westhues S., Meuresch M., Klankermayer J., Angew. Chem. Int. Ed.,2016, 55(41), 12841—12844 |
102 | Cabrero⁃Antonino J. R., Alberico E., Junge K., Junge H., Beller M., Chem. Sci., 2016, 7(5), 3432—3442 |
103 | Yuan M. L., Xie J. H., Zhou Q. L., ChemCatChem, 2016, 8(19), 3036—3040 |
104 | Yuan M. L., Xie J. H., Zhu S. F., Zhou Q. L., ACS Catal., 2016, 6(6), 3665—3669 |
105 | Miura T., Naruto M., Toda K., Shimomura T., Saito S., Sci. Rep., 2017, 7(1), 1586—1596 |
106 | Zou Y .Q., Chakraborty S., Nerush A., Oren D., Diskin⁃Posner Y., Ben⁃David Y., Milstein D., ACS Catal., 2018, 8(9), 8014—8019 |
107 | Sitte N. A., Bursch M., Grimme S., Paradies J., J. Am. Chem. Soc., 2019, 141(1), 159—162 |
108 | Ogata O., Nara H., Matsumura K., Kayaki Y., Org. Lett., 2019, 21(24), 9954—9959 |
109 | Zhang L., Zhang W., Yue X., Li P. J., Yang Z. Y., Pu M., Lei M., Chem. J. Chinese Universities, 2019, 40(9), 1911—1917(张林, 张尉, 岳鑫, 李鹏杰, 杨作银, 蒲敏, 雷鸣. 高等学校化学学报, 2019, 40(9), 1911—1917) |
110 | Xu L. J., Lam K .H., Ji J.,Wu J. X.,Fan Q. H., Lo W. H., Chan A. S. C., Chem. Commun., 2005,(11), 1390—1392 |
111 | Lam K. H., Xu L. J., Feng L. C., Fan Q. H., Lam F. L., Lo W. H., Chan A. S. C., Adv. Synth. Catal., 2005, 347(14), 1755—1758 |
112 | Tang W. J., Zhu S. F., Xu L. J., Zhou Q. L., Fan Q. H., Zhou H. F., Lam K. H., Chan A. S. C., Chem. Commun., 2007, (6), 613—615 |
113 | Li Z. W.,Wang T. L. ,He Y. M., Wang Z. J., Fan Q. H., Pan J., Xu L. J., Org. Lett., 2008, 10(22), 5265—5268 |
114 | Tang W. J., Tan J., Xu L. J., Lam K. H., Fan Q. H., Chan A. S. C., Adv. Synth. Catal., 2010, 352(6), 1055—1062 |
115 | Tang W. J., Sun Y. W., Xu L. J., Wang T. L., Fan Q. H., Lam K. H., Chan A. S. C., Org. Biomol. Chem., 2010, 8(15), 3464—3471 |
116 | Qin J., Chen F., Ding Z. Y., He Y. M., Xu L. J., Fan Q. H., Org. Lett.,2011, 13(24), 6568—6571 |
117 | Xu C. H,, Zhang L. J., Dong C. N., Xu J. B., Pan Y. X., Li Y. L., Zhang H. Y., Li H. R., Yu Z. Y., Xu L. J., Adv. Synth. Catal.,2016, 358(4), 567—572 |
118 | Shao J. J., Chang J. J., Chi C. Y., Org. Biomol. Chem.,2012, 10(35), 7045—7052 |
119 | Perrin L., Hudhomme P., Eur. J. Org. Chem., 2 011, (28), 5427—5440 |
[1] | 仇心声, 吴芹, 史大昕, 张耀远, 陈康成, 黎汉生. 离子型交联磺化聚酰亚胺质子交换膜的制备及高温燃料电池性能[J]. 高等学校化学学报, 2022, 43(8): 20220140. |
[2] | 葛怡聪, 聂万丽, 孙国峰, 陈稼轩, 田冲. 银催化2-烯基苯胺与苯并异噁唑的[5+1]环化反应[J]. 高等学校化学学报, 2022, 43(8): 20220142. |
[3] | 黄秋红, 李文军, 李鑫. 有机催化靛红衍生酮亚胺与噁唑酮的不对称Mannich型加成反应[J]. 高等学校化学学报, 2022, 43(8): 20220131. |
[4] | 郭志强, 杨博如, 席婵娟. 硼氢化试剂在二氧化碳还原官能化反应中的研究进展[J]. 高等学校化学学报, 2022, 43(7): 20220199. |
[5] | 闵婧, 王力彦. 利用三中心氢键限制芳酰胺构象的核磁共振氢谱分析[J]. 高等学校化学学报, 2022, 43(6): 20220084. |
[6] | 刘情情, 王普, 王永帅, 赵曼, 董焕丽. 新型萘/苝酰亚胺取代丁二炔衍生物的合成及拓扑聚合[J]. 高等学校化学学报, 2022, 43(6): 20220091. |
[7] | 常云飞, 廖明义, 温佳明. NaBH4/MCl x 体系对液体端羧基氟橡胶的还原及还原机理[J]. 高等学校化学学报, 2022, 43(6): 20210835. |
[8] | 赵君禹, 王春博, 王成杨, 张克, 丛冰, 杨岚, 赵晓刚, 陈春海. 导热膨胀石墨/聚醚酰亚胺复合材料的制备与性能[J]. 高等学校化学学报, 2022, 43(4): 20210800. |
[9] | 赵永梅, 穆叶舒, 洪琛, 罗稳, 田智勇. 双萘酰亚胺衍生物用于检测水溶液中的苦味酸[J]. 高等学校化学学报, 2022, 43(3): 20210765. |
[10] | 常斯惠, 陈涛, 赵黎明, 邱勇隽. 离子液体增塑生物基聚丁内酰胺的热分解机理[J]. 高等学校化学学报, 2022, 43(11): 20220353. |
[11] | 王寿柏, 吴修明, 束辰, 钟敏, 黄卫, 颜德岳. 含叔丁基聚酰亚胺均质膜的气体分离性能[J]. 高等学校化学学报, 2022, 43(11): 20220357. |
[12] | 张晓斐, 刘佳鑫. 可见光诱导邻烯基甲酰苯胺环化合成2-喹啉酮[J]. 高等学校化学学报, 2022, 43(10): 20220274. |
[13] | 王寿柏, 吴修明, 吴锦明, 汤艳峰, 束辰, 钟敏, 黄卫, 颜德岳. 含叔丁基/异丁基二胺的可溶性透明聚酰亚胺的合成与性能[J]. 高等学校化学学报, 2021, 42(9): 2944. |
[14] | 曹美琦, 刘霞, 崔树勋. 不同液体环境下聚丙烯酰胺的单分子力学[J]. 高等学校化学学报, 2021, 42(9): 2982. |
[15] | 朱德帅, 赵剑英, 杨正慧, 郭海泉, 高连勋. 基于多层结构设计的高储能密度氧化石墨烯/聚酰亚胺复合材料[J]. 高等学校化学学报, 2021, 42(8): 2694. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||