高等学校化学学报 ›› 2015, Vol. 36 ›› Issue (2): 368.doi: 10.7503/cjcu20140482

• 物理化学 • 上一篇    下一篇

高容量锂离子电池核壳型硅/碳复合电极材料的制备与性能

王存国1(), 潘璇1, 张雷1, 朱孟康1, 李德凯1, 刁玲博1, 李伟彦2   

  1. 1. 青岛科技大学橡塑材料与工程教育部重点实验室, 山东省橡塑材料与工程重点实验室, 青岛 266042
    2. 山东招金地质勘查有限公司, 烟台 265400
  • 收稿日期:2014-05-23 出版日期:2015-02-10 发布日期:2015-01-22
  • 作者简介:联系人简介: 王存国, 男, 博士, 教授, 主要从事功能高分子理论与电池应用研究. E-mail: cunguow@yahoo.com
  • 基金资助:
    山东省潍坊市高层次创新创业人才项目(批准号: 潍办字2013-69)资助

Preparation and Properties of the High Capacity Si@PVP-GCB Core-shell Composite Anode Material Used in Li-ion Batteries

WANG Cunguo1,*(), PAN Xuan1, ZHANG Lei1, ZHU Mengkang1, LI Dekai1, DIAO Lingbo1, LI Weiyan2   

  1. 1. Key Laboratory of Rubber-plastics, Ministry of Education, Shandong Province Key Lab of Rubber-plastics, Qingdao University of Science and Technology, Qingdao 266042, China
    2. Shandong Zhaojin Geological Survey Co. Ltd., Yantai 265400, China
  • Received:2014-05-23 Online:2015-02-10 Published:2015-01-22
  • Contact: WANG Cunguo E-mail:cunguow@yahoo.com
  • Supported by:
    Supported by the Higher鄄level Innovative and Entrepreneurial Talent Project of Weifang City, Shangdong Province, China(No. WF2013-69).

摘要:

通过自组装方式采用一步法制备了锂离子电池硅碳复合电极材料. 使用X射线衍射仪(XRD)、 透射电子显微镜(TEM)和扫描电子显微镜(SEM)等对样品结构进行表征. 结果表明, 聚乙烯吡咯烷酮(PVP)包覆的纳米硅颗粒(Si@PVP)均匀嵌入到具有三维网络纳米孔结构的导电石墨化炭黑(GCB)骨架中, 形成核壳复合型(Si@PVP-GCB)纳米颗粒, 既提高了该复合电极材料的导电性能, 又改善了材料的机械强度. 在纳米级GCB颗粒内部存在的中空石墨环结构和包覆在纳米Si颗粒外面的PVP包覆层都有效缓冲了纳米Si颗粒在充放电过程中较大的体积变化, 从而使纳米Si颗粒更加稳定. 电化学测试结果表明, Si@PVP-GCB 电极材料在电流密度为50 mA/g时, 经过100次循环后其可逆容量仍达到545 mA·h/g时, 远高于商品化的石墨微球(GMs)电极材料的容量(理论容量为372 mA·h/g).

关键词: 聚乙烯吡咯烷酮, 纳米硅, 炭黑, 核壳结构电极材料, 锂离子电池

Abstract:

Si/C composite electrode material, Si@PVP-GCB[GCB=graphitized carbon black, PVP=poly(N-vinyl-2-pyrrolidone] was prepared at room temperature by one step-assembly technique. The samples were characterized by X-ray diffraction(XRD), transmission electron microscopy(TEM), scanning electron microscopy(SEM), thermogravimetric analysis(TG) and Raman spectroscopy. It is found that a well-connected three dimensional(3D) nanoporous GCB network uniformly embedded with core-shell nanoparticles of the silicon nanoparticles(SiNPs) core and the PVP shell was formed. The GCB 3D network not only contributes to the high electrical conductivity of Si@PVP-GCB, but also strengthens the mechanical properties of the electrode material. Apart from that, the special hollow structure of GCB nanoparticles and PVP coating shell can buffer the volume variation of SiNPs much more effectively. The electrochemical results show that the Si@PVP-GCB delivered a reversible capacity of 545 mA·h/g at the current density of 50 mA/g after 100 cycles, much higher than that of the commercial graphite microspheres(GMs, 372 mA·h/g).

Key words: Poly(N-vinyl-2-pyrrolidone), Silicon nanoparticles, Carbon black, Core-shell structure electrode material, Lithium ion battery

中图分类号: 

TrendMD: