高等学校化学学报

• 研究论文 • 上一篇    下一篇

基于离散小波变换的蛋白质结构、功能与进化关系延时交叉相关分析

邱建丁1, 梁汝萍1, 莫金垣2   

    1. 南昌大学化学系, 南昌 330047;
    2. 中山大学化学与化学工程学院, 广州 510275
  • 收稿日期:2006-02-28 修回日期:1900-01-01 出版日期:2007-01-10 发布日期:2007-01-10
  • 通讯作者: 邱建丁

Correlation Analysis of Relationships Among Structure, Function and Evolution of Proteins Based on Discrete Wavelet Transform

QIU Jian-Ding1, LIANG Ru-Ping1, MO Jin-Yuan2   

    1. Department of Chemistry, Nanchang University, Nanchang 330047, China;
    2. School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
  • Received:2006-02-28 Revised:1900-01-01 Online:2007-01-10 Published:2007-01-10
  • Contact: QIU Jian-Ding

摘要: 基于氨基酸的疏水特性, 将离散小波变换与延时交叉相关分析相结合, 提出了一种分析蛋白质结构、功能和进化关系的新方法——序列小波层次相关法. 以丝氨酸蛋白酶超家族中Trypsin种属为研究对象, 描述了该方法在揭示不同物种的Trypsin蛋白质进化关系中的应用; 以蛋白质酪氨酸磷酸酶、血红蛋白和溶菌酶为例, 采用该方法揭示了蛋白质之间功能与序列的内在关系. 该方法为非参数方法, 具有简单、直观、可视和可操作性强等特点, 且不需要事先知道蛋白质的结构, 仅从蛋白质的氨基酸序列出发即可比较和揭示蛋白质之间的关系.

关键词: 序列小波层次相关法, 蛋白质, 结构, 功能, 进化

Abstract: A new method based on the combination of the discrete wavelet transform(DWT) and cross-covariance, named as sequence wavelet hiberarchy correlation method(SWHCM), is presented which reveals the relationship among the structure, function and evolution of proteins via the hydrophobic character of amino acids. The trypsin proteins of different species were chosen as the examples to describe the application of this method to revealing the evolution relationship according to the evolution vectors. The protein phosphatase, hemoglobin and lysozome were chosen as the examples to describe the intrinsic function-sequence relationship according to the function vectors by using this method. We can draw a conclusion that our non-parametric method is simple, visual and performs reasonably well without knowing the structure of proteins in advance, which is a promising approach to revealing the relationship between two compared proteins at different spatial resolutions.

Key words: Sequence wavelet hiberarchy correlation method, Proteins, Structure, Function, evolution

中图分类号: 

TrendMD: