高等学校化学学报

• 研究论文 • 上一篇    下一篇

铜-钛硅分子筛协同催化低温甲醇水蒸气重整反应

卢庆1,陈雪2,刘园园4,王菲1,脱永笑2,赵浩扬2,伊晨雪1,穆涛洋2,徐少飞2,秦浩田2,冯翔1,CHEN De1,3   

  1. 1.中国石油大学(华东) 化学化工学院 重质油全国重点实验室

    2.中国石油大学(华东) 新能源学院

    3.挪威科技大学 化学工程系 4.大型煤气化及煤基新材料国家工程研究中心

  • 收稿日期:2025-06-18 修回日期:2025-07-11 网络首发:2025-09-03 发布日期:2025-09-03
  • 通讯作者: 脱永笑 E-mail:yxtuo@upc.edu.cn
  • 基金资助:
    国家自然科学基金(批准号:22208374),山东省优秀青年自然科学基金(批准号:ZR2024YQ009),中国石油科技创新基金(批准号:2022DQ02-0607)资助

Synergistic catalysis of Cu and TS-1 for low-temperature methanol steam reforming reaction

LU Qing1,CHEN Xue2,LIU Yuanyuan4,WANG Fei1,TUO Yongxiao2,ZHAO Haoyang2,YI Chenxue1,MU Taoyang2,XU Shaofei2,QIN Haotian2,FENG Xiang1,CHEN De1,3   

  1. 1. State key laboratory of heavy oil processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China)

    2. College of New energy, China University of Petroleum (East China)

    3. Department of Chemical Engineering, Norwegian University of Science and Technology 4. National Engineering Research Center for Large-Scale Coal Gasification and Coal-Based New Materials

  • Received:2025-06-18 Revised:2025-07-11 Online First:2025-09-03 Published:2025-09-03
  • Contact: TUO Yongxiao E-mail:yxtuo@upc.edu.cn
  • Supported by:
    Supported by the National Natural Science Foundation of China (NO. 22208374), Natural Science Fundation of Shandong Province (No. ZR2024YQ009) and CNPC Innovation Found (No. 2022DQ02-0607)

摘要: 低温甲醇水蒸气重整制氢技术是解决当前氢能源可持续性和氢源分布不均的重要途经之一。本文研究了铜负载于不同Ti配位形式的钛硅分子筛(Cu/TS)催化剂在低温甲醇水蒸气重整制氢反应中的性能,并结合XRD、TEM、NH3-TPD和CO2-TPD等表征方法,揭示了铜与骨架钛之间的协同吸附作用显著提高了催化剂的低温活性和稳定性。结果表明,在常压、240 ℃、水醇比为2的条件下,Cu/TS-1催化剂表现出148.4 mmol/g·h的氢气产率,单位质量铜的活性为891 mmol/g·h,是文献报道共沉淀法合成Cu/ZnO催化剂单位铜质量活性(~621 mmol/g·h)的1.4倍。在构效关系分析中发现,骨架钛的引入增加了分子筛表面的弱酸性位点,改善了铜纳米颗粒的分散性及其与钛硅分子筛表面的相互作用。此外,骨架钛与铜纳米颗粒之间的相互作用有利于形成丰富的双配位CO2吸附位点,这优化了MSR反应中甲酸中间体的吸附构型,从而显著提升了甲酸关键中间体的分解速率,最终使Cu/TS-1催化剂具备了优异的低温制氢活性。

关键词: 铜基催化剂, 制氢, 分子筛, 纳米材料, 界面

Abstract: Low-temperature methanol steam reforming (L-MSR) for hydrogen production is a promising approach to addressing the challenges of hydrogen energy sustainability and uneven hydrogen sources distribution. This research focuses on investigating the performance of copper-loaded titanium silicate molecular sieves (Cu/TS) with varying Ti coordination configurations in hydrogen production via L-MSR. Through comprehensive characterization employing XRD, TEM, NH3-TPD and CO2-TPD, we demonstrate that the synergistic adsorption interaction between Cu and framework Ti significantly enhances both the low-temperature catalytic activity and stability. The results indicate that under atmospheric pressure at 240 ℃ with a water/methanol ratio of 2, the Cu/TS-1 catalyst exhibited a hydrogen production rate of 148.4 mmol/(g·h). Its copper mass-specific activity reached 891 mmol/(g·h), representing a 1.4-fold enhancement compared to the ~621 mmol/(g·h) of the co-precipitation synthesized Cu/ZnO catalyst reported in literature. Structural-activity relationship analysis reveals that the framework Ti in TS-1 increases the weak acidic sites, improves the Cu nanoparticles dispersion, and strengthens the interaction between Cu and TS-1 surface. Additionally, the interaction between framework Ti and Cu nanoparticles facilitates the formation of bidentate CO2 adsorption sites, optimizing the adsorption of formic acid intermediates and accelerating their decomposition, which significantly boosts low-temperature hydrogen production.

Key words: Cu-based catalysts; hydrogen production, molecular sieves, nanomaterials, interface

中图分类号: 

TrendMD: