高等学校化学学报 ›› 2025, Vol. 46 ›› Issue (7): 20250024.doi: 10.7503/cjcu20250024

• 物理化学 • 上一篇    下一篇

基于氟化硅氧烷溶剂锂金属电池电解液的设计及电化学性能

梁毅, 黄德权(), 殷广达, 闻港, 覃维献, 姚远, 韦韬()   

  1. 桂林航天工业学院汽车工程学院, 桂林 541004
  • 收稿日期:2025-01-20 出版日期:2025-07-10 发布日期:2025-05-07
  • 通讯作者: 黄德权,韦韬 E-mail:hdq2535@163.com;weitao369369@126.com
  • 基金资助:
    广西高校中青年教师科研基础能力提升项目(2024KY0808);广西高校中青年教师科研基础能力提升项目(2022KY0796)

Electrolytes Design and Electrochemical Performance for Lithium Metal Batteries Based on Fluorosiloxane Solvents

LIANG Yi, HUANG Dequan(), YIN Guangda, WEN Gang, QIN Weixian, YAO Yuan, WEI Tao()   

  1. College of Automotive Engineering,Guilin University of Aerospace Technology,Guilin 541004,China
  • Received:2025-01-20 Online:2025-07-10 Published:2025-05-07
  • Contact: HUANG Dequan, WEI Tao E-mail:hdq2535@163.com;weitao369369@126.com
  • Supported by:
    the Project on Enhancement of Basic Research Ability of Young and Middle-aged Teachers in Guangxi Universities and Colleges, China(2024KY0808)

摘要:

针对锂金属电池存在锂枝晶生长、 不稳定的电极/电解液界面及在乙二醇二甲醚(DME)电解液中氧化稳定性差的问题. 本文以三甲氧基(3,3,3-三氟丙基)硅烷(TFS)作为电解液溶剂, 结合双氟磺酰亚胺锂(LiFSI)设计了一种新型的氟化硅氧烷电解液. 采用密度泛函理论(DFT)和分子动力学模拟(MD)分析了电解液的锂溶剂化结构, 通过充放电、 循环性能和倍率性能测试对比分析了电池在氟化硅氧烷电解液和二甲醚(DME)电解液中的电化学性能, 并通过扫描电子显微镜(SEM)和X射线光电子能谱(XPS)对锂沉积形貌和电极界面成分进行分析. 结果表明, TFS中的Si—O键比DME中的C—O键具有更高的键能, 这可以增强电解液的氧化稳定性, 并能匹配高电压正极材料. TFS溶剂与Li+之间呈现相对较弱的结合能力, 这种独特的锂溶剂化结构有利于诱导FSI阴离子在锂金属负极表面优先分解, 并形成富含LiF的固态电解质界面膜(SEI膜), 有效抑制了锂枝晶生长, 稳定了电极界面, 并提高了锂金属电池的循环寿命. 在TFS电解液中, Li ‖ Cu 电池在1.0 mA/cm2电流密度下可以稳定循环300次, Li ‖ LFP 全电池在2.0C倍率下经过400次循环后, 其放电比容量没有出现明显的衰减, Li ‖ NCM811全电池在1.0C倍率下经过300次循环后放电比容量保持率仍达83%, 显示出优异的循环稳定性.

关键词: 锂金属电池, 氟化硅氧烷溶剂, 电化学性能, 循环稳定性

Abstract:

Addressing the issues of lithium dendrite growth, unstable electrode/electrolyte interface, and poor oxidation stability in ethylene glycol dimethyl ether(DME) electrolyte in lithium metal batteries, this work uses trimethoxy(3,3,3-trifluoropropyl) silane(TFS) as the electrolyte solvent and combines with lithium difluorosulfonylimide(LiFSI) salt to design a novel fluorinated siloxane electrolyte. The lithium solvation structure of the electrolyte were analyzed by density functional theory(DFT) and molecular dynamics simulations(MD). The electrochemical performance of the cells in fluorinated siloxane electrolyte and DME electrolyte were compared and analyzed through charge discharge tests, cycle performance tests, and rate performance tests. The lithium deposition morphology and electrode interface composition were analyzed by scanning electron microscopy(SEM) and X-ray photoelectron spectroscopy(XPS). As a result, the Si—O bond in TFS has a higher bond energy than the C—O bond in DME electrolyte, which can enhance the oxidation stability of the electrolyte and match high-voltage cathode materials. In addition, TFS solvent exhibits relatively weak binding ability with Li+, and this unique lithium solvation structure is conductive to inducing preferentially decompose of FSI anions on the surface of lithium metal anode and forming LiF-rich solid electrolyte interphase(SEI) films, effectively inhibiting lithium dendrite growth, stabilizing the electrode interface, and improving the cycle life of lithium metal batteries. In TFS electrolyte, the Li 􀰙􀰙 Cu cell can be stably cycled for 300 cycles at a current density of 1.0 mA/cm2, the Li 􀰙􀰙 LFP full cell shows no significant capacity degradation after 400 cycles at a rate of 2.0C, and the Li 􀰙􀰙 CNCM811 full cell maintains a discharge specific capacity retention rate of 83% after 300 cycles at a rate of 1.0C, demonstrating excellent cycling stability.

Key words: Lithium metal battery, Fluorosiloxane solvent, Electrochemical performance, Cycling stability

中图分类号: 

TrendMD: