高等学校化学学报 ›› 2024, Vol. 45 ›› Issue (1): 20230353.doi: 10.7503/cjcu20230353

• 高分子化学 • 上一篇    下一篇

电活性聚乳酸纳纤膜的形态调控及高效捕集PM0.3性能

黄荣廷1, 朱桂英2, 李欣雨1, 唐道远3, 张勇3, 王斌3, 朱金佗1, 何新建1, 徐欢2()   

  1. 1.中国矿业大学安全工程学院, 2. 材料与物理学院, 徐州 221116
    3.安徽森泰木塑集团股份有限公司, 广德 242299
  • 收稿日期:2023-08-01 出版日期:2024-01-10 发布日期:2023-10-07
  • 通讯作者: 徐欢 E-mail:hihuan@cumt.edu.cn
  • 基金资助:
    国家自然科学基金(52003292);江苏省自然科学基金(BK20221143);中央高校基本科研业务费专项资金(2021QN1115)

Morphological Manipulation of Highly Electroactive Poly(lactic acid) Nanofibrous Membranes for Efficient Removal of Airborne PM0.3

HUANG Rongting1, ZHU Guiying2, LI Xinyu1, TANG Daoyuan3, ZHANG Yong3, WANG Bin3, ZHU Jintuo1, HE Xinjian1, XU Huan2()   

  1. 1.School of Safety Engineering
    2.School of Materials Science and Physics,China University of Mining and Technology,Xuzhou 221116,China
    3.Anhui Sentai WPC Group Share Co. ,Ltd. ,Guangde 242299,China
  • Received:2023-08-01 Online:2024-01-10 Published:2023-10-07
  • Contact: XU Huan E-mail:hihuan@cumt.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(52003292);the Natural Science Foundation of Jiangsu Province, China(BK20221143);the Fundamental Research Funds for the Central Universities, China(2021QN1115)

摘要:

通过静电喷雾沸石咪唑框架-8(ZIF-8)分散液对同步电纺聚乳酸(PLA)纳米纤维进行表面功能化, 以增强PLA/ZIF-8纳米纤维膜(简称纳纤膜)表面的电荷俘获及储存能力, 从而提高静电吸附效果和过滤性能. 通过在分散液中添加不同量的ZIF-8来调控锚定于纤维表面的ZIF-8负载量, 探究ZIF-8含量与纤维膜形态和性能演变之间关系. 采用扫描电子显微镜(SEM)对纤维膜的微观形态进行表征, 并结合傅里叶变换红外光谱(FTIR)和X射线衍射谱(XRD)分析了纤维膜的化学性质、 界面相互作用和晶体结构的演变机理. 采用静电测试仪、 电介质测试仪和静电计分别评价表面电势、 相对介电常数和输出电压, 表征纤维膜的电活性和摩擦电输出性能. 通过万能试验机测试聚乳酸纳米纤维膜的力学性能, 并使用自主搭建的空气过滤测试平台探究纤维膜高效过滤机理. 结果表明, PLA/ZIF-8纳纤膜具有高电活性、 高过滤效率、 低空气阻力和优异的力学性能: 其表面电势和最大开路输出电压分别可达5.9 kV和30.9 V, 与纯PLA对比样相比分别提升5.6倍和5.3倍, 同时拉伸强度和拉伸韧性增幅分别高达78%和111%. 更重要的是, PLA/ZIF-8纳纤膜的PM0.3过滤性能得到大幅提升(增幅可达12.6%), 且空气阻力有所降低(40 Pa, 65 L/min). 所制备的环境友好型PLA/ZIF-8纳纤膜在滤除超细颗粒物和阻断病毒气溶胶传播等领域具有广阔应用前景.

关键词: 聚乳酸, 纳纤膜, 金属-有机骨架功能化, 电活性, 空气过滤

Abstract:

The surface functionalization of poly(lactic acid)(PLA) nanofibers was carried out by electrospraying zeolite imidazolium framework-8(ZIF-8) dispersion to enhance the surface charge capture and storage capacity of PLA/ZIF-8 nanofibrous membranes(NFMs), thus improving the electrostatic adsorption effect and filtration performance. By adding different contents of ZIF-8 to the dispersion to regulate the load of ZIF-8 anchored to the fiber surface, the relationship between the content of ZIF-8 and the evolution of the NFMs morphology and properties was explored. Scanning electron microscopy(SEM) was used to characterize the microstructure of the NFMs, and the chemical properties, interface interaction and crystal structure evolution mechanism were analyzed by Fourier transform infrared spectroscopy(FTIR) and X-ray diffraction XRD analyses. To characterize the electroactivity and triboelectric output performance of the membranes, the surface potential, dielectric constant and open-circuit voltage were evaluated by electrostatic tester, dielectric tester and electrometer, respectively. The mechanical properties of PLA/ZIF-8 NFMs were tested by universal testing machine, and a homemade air filtration test platform was used to explore the high-efficiency filtration mechanisms of the membranes. The results showed that the PLA/ZIF-8 NFMs had high electrical activity, high filtration efficiency, low air resistance, and excellent mechanical properties. The surface potential and maximum open-circuit voltage of the NFMs reached 5.9 kV and 30.9 V, which were 5.6 times and 5.3 times higher than those of the comparative samples, Pure PLA, respectively. Meanwhile, the tensile strength and tensile toughness were increased by 78% and 111%, respectively. More importantly, the PM0.3 filtration performance of PLA/ZIF-8 NFMs was greatly improved(up to 12.6% increase), and the air resistance was reduced(40 Pa, 65 L/min). The proposed environmentally friendly PLA/ZIF-8 NFMs have broad application prospects in the fields of filtering ultrafine particles and blocking the transmission of viral aerosols.

Key words: Poly(lactic acid), Nanofibrous membrane, Metal-organic framework functionalization, Electroactivity, Air filtration

中图分类号: 

TrendMD: