高等学校化学学报 ›› 2016, Vol. 37 ›› Issue (6): 1196-1201.doi: 10.7503/cjcu20160059

• 高分子化学 • 上一篇    下一篇

线形、梳形和星形高分子静态和动态性质的模拟

潘凯1,2, 朱有亮2, 付翠柳2(), 黄以能1,3, 孙昭艳1,2   

  1. 1. 伊犁师范学院物理科学与技术学院, 新疆凝聚态相变与微结构实验室, 伊宁 835000
    2. 中国科学院长春应用化学研究所, 高分子物理与化学国家重点实验室, 长春 130022
    3. 南京大学物理学院, 固体微结构物理国家重点实验室, 南京 210093
  • 收稿日期:2016-01-24 出版日期:2016-06-10 发布日期:2016-04-30
  • 作者简介:联系人简介: 付翠柳, 女, 博士, 副研究员, 主要从事高分子受限输运行为研究. E-mail:clfu@ciac.ac.cn
  • 基金资助:
    国家“九七三”计划项目(批准号: 2012CB821500)和国家自然科学基金(批准号: 21222407, 21404102, 21474111, 21104082)资助

Simulation on the Static and Dynamic Properties of Linear, Comb-like and Star-like Polymers

PAN Kai1,2, ZHU Youliang2, FU Cuiliu2,*(), HUANG Yineng1,3, SUN Zhaoyan1,2   

  1. 1. Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter Physics,College of Physical Science and Technology, Yili Normal University, Yining 835000, China
    2. State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry,Chinese Academy of Sciences, Changchun 130022, China
    3. School of Physics, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
  • Received:2016-01-24 Online:2016-06-10 Published:2016-04-30
  • Contact: FU Cuiliu E-mail:clfu@ciac.ac.cn
  • Supported by:
    † Supported by the National Basic Research Program of China(No.2012CB821500) and the National Natural Science Foundation of China(Nos.21222407, 21404102, 21474111, 21104082)

摘要:

以梳形高分子为纽带, 基于粗粒化分子动力学模拟方法, 研究了线形、 梳形和星形拓扑结构高分子的静态和动态性质, 以揭示稀溶液中高分子链行为与链拓扑结构依赖关系的一般性规律. 研究结果表明, 随着线形-梳形-星形的链拓扑结构转变, 回转半径的标度关系由仅依赖分子聚合度转变为同时依赖链聚合度与臂数或侧链数. 分析了星形高分子和梳形高分子的静态和动态性质的特征规律. 星形高分子的臂数增加使其尺寸迅速减小, 形状则由长椭球形转变为类球形, 且扩散系数也随之增加; 其均方回转半径(<Rg>)和扩散系数(D)与分子聚合度(N)及臂数(f)的标度规律为<Rg>~N0.581f-0.402, D~N-0.763f 0.227. 梳形高分子的静态与动态性质与分子聚合度及侧链数的依赖关系为<Rg>~N0.597f-0.212(每个支化点只有一条侧链)和<Rg>~N0.599f-0.316(每个支化点有多条侧链).

关键词: 分子动力学模拟, 星形高分子, 梳形高分子, 均方回转半径, 扩散系数

Abstract:

We studied the static and dynamic properties of linear, comb-like and star-like polymers by means of molecular dynamics method. We found star-like polymers had the smallest size, and linear polymers had the largest size at the same chain length. Changing the chain topologies from linear to comb-like and star-like will lead to the great dependence of the scaling relationship of radius of gyration on both the degree of polymerization and the number of side chains or the arms. For star polymers, the increase of the number of arms results inthe decrease of the radius of gyration and increase of the diffusion coefficients. Moreover, the scaling relationship for radius of gyrations for star polymers and comb polymer is also obtained. These results may help people understand the physical insight of the topological structure dependence on the static and dynamic properties of polymer chains.

Key words: Molecular dynamics simulation, Star-like polymer, Comb-like polymer, Radius of gyration, Diffusion coefficient

中图分类号: