Chem. J. Chinese Universities ›› 2025, Vol. 46 ›› Issue (4): 20240556.doi: 10.7503/cjcu20240556
• Polymer Chemistry • Previous Articles
Received:
2024-12-23
Online:
2025-04-10
Published:
2025-01-15
Contact:
SHI Tongfei
E-mail:tfshi@gdut.edu.cn
Supported by:
CLC Number:
TrendMD:
ZHAN Senhua, SHI Tongfei. Machine Learning Model for Predicting the Glass Transition Temperature of Polyimides Based on Molecular Fingerprints and Quantum Chemical Descriptors[J]. Chem. J. Chinese Universities, 2025, 46(4): 20240556.
Model | Train R² | Test R² | RMSE | MAE |
---|---|---|---|---|
XGB⁃DFT | 0.983 | 0.575 | 38.07 | 27.90 |
XGB⁃MACCS | 0.814 | 0.785 | 27.11 | 21.71 |
XGB⁃Combined | 0.956 | 0.811 | 25.41 | 20.20 |
SVR⁃DFT | 0.497 | 0.512 | 40.79 | 30.73 |
SVR⁃MACCS | 0.766 | 0.755 | 28.94 | 22.26 |
SVR⁃Combined | 0.845 | 0.811 | 25.40 | 19.55 |
RF⁃DFT | 0.813 | 0.529 | 40.11 | 28.65 |
RF⁃MACCS | 0.793 | 0.751 | 29.13 | 23.03 |
RF⁃Combined | 0.895 | 0.757 | 28.81 | 23.38 |
GBR⁃DFT | 0.941 | 0.534 | 39.89 | 29.24 |
GBR⁃MACCS | 0.833 | 0.731 | 30.28 | 24.63 |
GBR⁃Combined | 0.882 | 0.822 | 24.64 | 18.86 |
Table 1 Performance statistics of 12 predictive model
Model | Train R² | Test R² | RMSE | MAE |
---|---|---|---|---|
XGB⁃DFT | 0.983 | 0.575 | 38.07 | 27.90 |
XGB⁃MACCS | 0.814 | 0.785 | 27.11 | 21.71 |
XGB⁃Combined | 0.956 | 0.811 | 25.41 | 20.20 |
SVR⁃DFT | 0.497 | 0.512 | 40.79 | 30.73 |
SVR⁃MACCS | 0.766 | 0.755 | 28.94 | 22.26 |
SVR⁃Combined | 0.845 | 0.811 | 25.40 | 19.55 |
RF⁃DFT | 0.813 | 0.529 | 40.11 | 28.65 |
RF⁃MACCS | 0.793 | 0.751 | 29.13 | 23.03 |
RF⁃Combined | 0.895 | 0.757 | 28.81 | 23.38 |
GBR⁃DFT | 0.941 | 0.534 | 39.89 | 29.24 |
GBR⁃MACCS | 0.833 | 0.731 | 30.28 | 24.63 |
GBR⁃Combined | 0.882 | 0.822 | 24.64 | 18.86 |
1 | Liaw D. J., Wang K. L., Huang Y. C., Lee K. R., Lai J. Y., Prog. Polym. Sci., 2012, 37(7), 907—974 |
2 | Negi Y. S., Damkale S. R., Ansari S., J. Macro. Sci., 2001, 41(1/2), 119—138 |
3 | Tao K., Qin F., Li Y., Zhang S., Han S., Liu G., Wang J., Shen J., Yang Z., Tang Y., Sun G., High Perform. Polym., 2022, 34(9), 998—1008 |
4 | Ni L., Luo Y., Zhou C., Meng H., Wang G., Yan L., Liang M., Qiu S., Zhou S, Zou H., Polymer, 2024, 298, 126891 |
5 | Yang X., Geng W., Bi K., Mei L., Li Y., He J., Mu J., Hou X., Chou X., Micromachines, 2021, 12(1), 70—73 |
6 | Kimoto Y., Fujita T., Furuta N., Kitamura A., Suzuki H., J. Spacecr. Rockets, 2016, 53(6), 1028—1034 |
7 | Yi C., Li W., Shi S., He K., Ma P., Chen M., Yang C., Sol. Energy, 2020, 195, 340—354 |
8 | Wan B., Zheng M. S., Yang X., Dong X., Li Y., Mai Y. W., Chen G., Zha J. W., Energy Environ. Mater., 2023, 6(1), e12427 |
9 | Zhou Z., Wang Y., Xu D., Zhang Y., Sol. Energy Mater. Sol. Cells, 2010, 94(12), 2042—2045 |
10 | Qiu X. S., Wu Q., Shi D. X., Zhang Y. Y., Chen K. C., Li H. S., Chem. J. Chinese Universities, 2022, 43(8), 20220140 |
仇心声, 吴芹, 史大昕, 张耀远, 陈康成, 黎汉生. 高等学校化学学报, 2022, 43(8), 20220140 | |
11 | Edwards W. M., Ivan M. R., Polyimides of Pyromellitic Acid, US 2710853A, 1955⁃06⁃14 |
12 | Frazer A. H., J. Polymer Science Part A⁃1: Polymer Chemistry, 1969, 7(8), 2464—2464 |
13 | Yang Y., Jung Y., Cho M. D., Lee S. G., Kwon S., RSC Adv., 2015, 5(71), 57339—57345 |
14 | Zhang D., Wang C., Wang Q., Wang T., Tribology International, 2019, 140, 105728 |
15 | Zhou S. W., Yu C., Chen M., Shi C. Y., Gu R., Qu D. H., Smart Molecules, 2023, 1(2), e20220009 |
16 | Du Y., Jamasb A. R., Guo J., Fu T., Harris C., Wang Y., Blundell T. L., Nat. Mach. Intell., 2024, 6(6), 589—604 |
17 | Sanchez⁃Lengeling B., Aspuru⁃Guzik A., Science, 2018, 361(6400), 360—365 |
18 | Kneiding H., Balcells D., Chem. Sci., 2024, 15(38), 15522—15539 |
19 | Karthikeyan A., Priyakumar U. D., J. Chem. Sci., 2021, 134(1), 1—20 |
20 | Prašnikar E., Ljubič M., Perdih A., Borišek J., Artif. Intell. Rev., 2024, 57(4), 102—103 |
21 | Faber F. A., Hutchison L., Huang B., Gilmer J., Schoenholz S. S., Dahl G. E., von Lilienfeld O. A., J. Chem. Theory Comput., 2017, 13(11), 5255—5264 |
22 | Yue D., Feng Y., Liu X. X., Yin J. H., Zhang W. C., Guo H., Lei Q. Q., Adv. Sci., 2022, 9(17), 2105773 |
23 | Toland A., Tran H., Chen L., Li Y., Zhang C., Gutekunst W., Ramprasad R., J. Phys. Chem. A, 2023, 127(50), 10709—10716 |
24 | Zhao G., Xu T., Fu X., Zhao W., Wang L., Lin J., Du L., Compos. Sci. Technol., 2024, 248, 110455 |
25 | Lightstone J. P., Chen L., Kim C., Batra R., Ramprasad R., J. Appl. Phys., 2020, 127(21), 215105 |
26 | Liu T. L., Liu L. Y., Ding F., Li Y. Q., Chin. J. Polym. Sci., 2022, 40(7), 834—842 |
27 | Hou Z. J., Li R. Q., Li J., Feng Y. N., Jin Q. Q., Sun J. H., Cao J., Chem. J. Chinese Universities, 2024, 45(9), 20240199 |
侯泽金, 李荣其, 李健, 冯怡宁, 靳茜茜, 孙俊红, 曹洁, 高等学校化学学报, 2024, 45(9), 20240199 | |
28 | Couchman P. R., J. Appl. Phys., 1979, 50(10), 6043—6046 |
29 | Pásztor S., Becsei B., Szarka G., Thomann Y., Thomann R., Mühlhaupt R., Iván B., Materials, 2020, 13(21), 4822—4837 |
30 | Alesadi A., Cao Z., Li Z., Zhang S., Zhao H. Y., Gu X. D., Xia W. J., Cell Rep. Phys. Sci., 2022, 3(6), 100911 |
31 | Huang C. C., Zhang B. Q., Liu C. Y., Chem. J. Chinese Universities, 2021, 42(8), 2617—2626 |
黄聪聪, 张宝庆, 刘琛阳.高等学校化学学报, 2021, 42(8), 2617—2626 | |
32 | Qiu H., Qiu X., Dai X., Sun Z. Y., J. Mater. Chem. C, 2023, 11(8), 2930—2940 |
33 | Ding M. X., Polyimide: Chemistry, Structure, and Relationship to Properties and Materials, Chemical Industry Press, Beijing, 2006, 221—504 |
丁孟贤. 聚酰亚胺: 化学, 结构与性能的关系及材料. 北京: 科学出版社, 2006, 221—504 | |
34 | Weininger D., J. Chem. Inf. Model., 1988, 28(1), 31—36 |
35 | Kwon J. H., Han J. Y., Kim M., Kim S. K., Lee D. K., Kim M. G., Arch. Pharm. Res., 2024, 47(12), 914—923 |
36 | Rogers D., Hahn M., J. Chem. Inf. Model, 2010, 50(5), 742—754 |
37 | Zhang Y., Xu X., Polymer Chemistry, 2021, 12(6), 843—851 |
38 | Zhang Y., Xu X., Mol. Cryst. Liq. Cryst., 2021, 730(1), 9—22 |
39 | Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., |
Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A. Jr., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas Ö., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J., Gaussian 09, Revision E.01, Gaussian Inc., Wallingford CT, 2009 | |
40 | Zhao Y., Truhlar D. G., Theoretical Chemistry Accounts, 2008, 120(1), 215—241 |
41 | Breiman L., Machine Learning, 2001, 45(1), 5—32 |
42 | Smola A. J., Murata N., Schölkopf B., Müller K.R., Asymptotically Optimal Choice of ε-Loss for Support Vector Machines, Proceedings of the ICANN 98, Springer, London, 1998 |
43 | Chen T., Guestrin C., Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,San Francisco, California, 2016 |
[1] | TAN Yingjia, CHEN Liang, LIU Yulin, NA Risong, ZHAO Xi. Discovery of CDK2 Inhibitors Based on Machine Learning and Molecular Dynamics Simulations [J]. Chem. J. Chinese Universities, 2025, 46(3): 20240442. |
[2] | HOU Zejin, LI Rongqi, LI Jian, FENG Yining, JIN Qianqian, SUN Junhong, CAO Jie. Prediction of Deep Vein Thrombosis Based on GC-MS and Machine Learning [J]. Chem. J. Chinese Universities, 2024, 45(9): 20240199. |
[3] | REN Junqing, MA Yule, MA Yuxin, GAO Shaoqi, QIU Yuhao, CHEN Guobo, XIA Shuwei, YU Liangmin. Synthesis of Pyridazine-containing Amide Ethers and Experimental Evaluation and Theoretical Studies of Their Corrosion Inhibition [J]. Chem. J. Chinese Universities, 2024, 45(10): 20240235. |
[4] | CAO Shuangshuang, HUANG Jiyong, LI Wei, ZHANG Houjun, LI Xiangyuan, HAN You. Optimization of Kinetic Mechanism for Methane Combustion Based on Machine Learning [J]. Chem. J. Chinese Universities, 2024, 45(10): 20240296. |
[5] | ZHANG Yan, JIANG Xingjian, LIU Ming, ZHENG Zhi, ZHANG Yong. Predict Efficiency of Organic Solar Cell with Low Generalization Error Based on Molecular Property and Device Fabrication [J]. Chem. J. Chinese Universities, 2023, 44(7): 20230165. |
[6] | QIU Xinsheng, WU Qin, SHI Daxin, ZHANG Yaoyuan, CHEN Kangcheng, LI Hansheng. Preparation and High Temperature Fuel Cell Performance of Ionic Crosslinked Sulfonated Polyimides for Proton Exchange Membranes [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220140. |
[7] | WONG Honho, LU Qiuyang, SUN Mingzi, HUANG Bolong. Rational Design of Graphdiyne-based Atomic Electrocatalysts: DFT and Self-validated Machine Learning [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220042. |
[8] | ZHAO Junyu, WANG Chunbo, WANG Chengyang, ZHANG Ke, CONG Bing, YANG Lan, ZHAO Xiaogang, CHEN Chunhai. Preparation and Performance of Thermally Conductive Expanded Graphite/Polyetherimide Composites [J]. Chem. J. Chinese Universities, 2022, 43(4): 20210800. |
[9] | WANG Shoubai, WU Xiuming, SHU Chen, ZHONG Min, HUANG Wei, YAN Deyue. Gas Separation Performance of Polyimide Homogeneous MembranesContaining tert-Butyl Groups [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220357. |
[10] | WANG Shoubai, WU Xiuming, WU Jinming, TANG Yanfeng, SHU Chen, ZHONG Min, HUANG Wei, YAN Deyue. Synthesis and Properties of Soluble Transparent Polyimides Containing tert-Butyl and Isobutyl Groups [J]. Chem. J. Chinese Universities, 2021, 42(9): 2944. |
[11] | ZHU Deshuai, ZHAO Jianying, YANG Zhenghui, GUO Haiquan, GAO Lianxun. Graphene Oxide/Polyimide Composites with High Energy Storage Density Based on Multilayer Structure [J]. Chem. J. Chinese Universities, 2021, 42(8): 2694. |
[12] | HUANG Congcong, ZHANG Baoqing, LIU Chenyang. Predicting the Glass Transition Temperature of Polyimides: Group Additive Property Method and Assigning the Group Contributions to Unknown Groups [J]. Chem. J. Chinese Universities, 2021, 42(8): 2617. |
[13] | DU Jiahui, LIAO Kang, HONG Benkun, WANG Zhongye, MA Jing, LI Wei, LI Shuhua. Generalized Energy-based Fragmentation Clustering Algorithm for Localized Excited States [J]. Chem. J. Chinese Universities, 2021, 42(7): 2227. |
[14] | WU Tao, FANG Yuting, DONG Jie, ZHAO Xin, ZHANG Qinghua. Synthesis and Properties of Polyimide Resin Containing Acetylene and Benzoxazine Double Crosslinking Moieties [J]. Chem. J. Chinese Universities, 2021, 42(6): 1978. |
[15] | WANG Xianwei, KE Hongjun, YUAN Hang, LU Gewu, LI Liying, MENG Xiangsheng, SONG Shulin, WANG Zhen. High Temperature Resistant and Soluble Polyimide Resins and Their Composites [J]. Chem. J. Chinese Universities, 2021, 42(6): 2041. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||