Chem. J. Chinese Universities ›› 2024, Vol. 45 ›› Issue (9): 20240199.doi: 10.7503/cjcu20240199
• Analytical Chemistry • Previous Articles Next Articles
HOU Zejin, LI Rongqi, LI Jian, FENG Yining, JIN Qianqian, SUN Junhong, CAO Jie()
Received:
2024-04-19
Online:
2024-09-10
Published:
2024-05-31
Contact:
CAO Jie
E-mail:jie.cao@sxmu.edu.cn
Supported by:
CLC Number:
TrendMD:
HOU Zejin, LI Rongqi, LI Jian, FENG Yining, JIN Qianqian, SUN Junhong, CAO Jie. Prediction of Deep Vein Thrombosis Based on GC-MS and Machine Learning[J]. Chem. J. Chinese Universities, 2024, 45(9): 20240199.
No. | Compound | Molecular formula | m/z | Retention time/min | Similarity | VIP | P value |
---|---|---|---|---|---|---|---|
1 | 2⁃Aminoisobutyric acid | C4H9NO2 | 130.02 | 11.671 | 0.957 | 1.595 | 0.003 |
2 | Citric acid | C6H8O7 | 272.98 | 29.074 | 0.935 | 1.731 | <0.001 |
3 | Nicotinamide | C6H6N2O | 178.97 | 19.154 | 0.935 | 1.641 | <0.001 |
4 | 3⁃Methyl⁃2⁃oxovaleric acid | C6H10O3 | 89.04 | 11.802 | 0.935 | 1.396 | 0.010 |
5 | 3⁃Deoxytetronic acid | C4H8O4 | 117.02 | 15.240 | 0.957 | 1.425 | 0.003 |
6 | 3⁃Hydroxypropanoate | C3H6O3 | 146.99 | 11.077 | 0.957 | 1.474 | 0.008 |
7 | 5⁃Oxoproline | C5H7NO3 | 156.00 | 20.518 | 0.935 | 1.328 | 0.028 |
8 | D⁃Pinitol | C7H14O6 | 260.02 | 29.327 | 0.761 | 1.772 | <0.001 |
9 | L⁃Isoleucine | C6H13NO2 | 158.00 | 13.780 | 0.891 | 1.500 | 0.003 |
10 | L⁃Ornithine hydrochloride | C5H13ClN2O2 | 185.95 | 26.954 | 0.717 | 1.182 | 0.036 |
11 | L⁃Proline | C5H9NO2 | 142.00 | 14.289 | 0.935 | 1.294 | 0.021 |
12 | N⁃Acetyl⁃L⁃glutamate | C7H11NO5 | 185.99 | 19.805 | 0.935 | 1.404 | 0.011 |
13 | β⁃D⁃Glucose | C6H12O6 | 319.00 | 31.510 | 0.935 | 1.421 | 0.011 |
14 | Glycolate | C2H4O3 | 147.00 | 9.516 | 0.935 | 1.341 | 0.024 |
15 | Decanoic acid | C10H20O2 | 229.02 | 18.563 | 0.935 | 1.535 | 0.002 |
No. | Compound | Molecular formula | m/z | Retention time/min | Similarity | VIP | P value |
16 | Glycerophosphoric acid | C3H9O6P | 356.97 | 27.377 | 0.935 | 1.448 | 0.002 |
17 | Isocitric acid | C6H8O7 | 245.03 | 29.212 | 0.913 | 1.602 | 0.001 |
18 | Suberic acid | C8H14O4 | 117.98 | 25.755 | 0.935 | 1.645 | <0.001 |
19 | Allose | C6H12O6 | 319.00 | 31.507 | 0.761 | 1.506 | 0.004 |
20 | 4⁃Chloropyridine⁃2,6⁃dicarboxylic Acid | C7H4ClNO4 | 258.97 | 38.004 | 0.935 | 1.219 | 0.026 |
21 | Conduritol⁃β⁃expoxide | C6H10O5 | 317.96 | 34.204 | 0.935 | 1.425 | 0.005 |
22 | Oxalacetic acid | C4H4O5 | 174.00 | 8.887 | 0.935 | 1.206 | 0.042 |
Table 1 22 Differential metabolites of the rat serum between DVT and Sham groups*
No. | Compound | Molecular formula | m/z | Retention time/min | Similarity | VIP | P value |
---|---|---|---|---|---|---|---|
1 | 2⁃Aminoisobutyric acid | C4H9NO2 | 130.02 | 11.671 | 0.957 | 1.595 | 0.003 |
2 | Citric acid | C6H8O7 | 272.98 | 29.074 | 0.935 | 1.731 | <0.001 |
3 | Nicotinamide | C6H6N2O | 178.97 | 19.154 | 0.935 | 1.641 | <0.001 |
4 | 3⁃Methyl⁃2⁃oxovaleric acid | C6H10O3 | 89.04 | 11.802 | 0.935 | 1.396 | 0.010 |
5 | 3⁃Deoxytetronic acid | C4H8O4 | 117.02 | 15.240 | 0.957 | 1.425 | 0.003 |
6 | 3⁃Hydroxypropanoate | C3H6O3 | 146.99 | 11.077 | 0.957 | 1.474 | 0.008 |
7 | 5⁃Oxoproline | C5H7NO3 | 156.00 | 20.518 | 0.935 | 1.328 | 0.028 |
8 | D⁃Pinitol | C7H14O6 | 260.02 | 29.327 | 0.761 | 1.772 | <0.001 |
9 | L⁃Isoleucine | C6H13NO2 | 158.00 | 13.780 | 0.891 | 1.500 | 0.003 |
10 | L⁃Ornithine hydrochloride | C5H13ClN2O2 | 185.95 | 26.954 | 0.717 | 1.182 | 0.036 |
11 | L⁃Proline | C5H9NO2 | 142.00 | 14.289 | 0.935 | 1.294 | 0.021 |
12 | N⁃Acetyl⁃L⁃glutamate | C7H11NO5 | 185.99 | 19.805 | 0.935 | 1.404 | 0.011 |
13 | β⁃D⁃Glucose | C6H12O6 | 319.00 | 31.510 | 0.935 | 1.421 | 0.011 |
14 | Glycolate | C2H4O3 | 147.00 | 9.516 | 0.935 | 1.341 | 0.024 |
15 | Decanoic acid | C10H20O2 | 229.02 | 18.563 | 0.935 | 1.535 | 0.002 |
No. | Compound | Molecular formula | m/z | Retention time/min | Similarity | VIP | P value |
16 | Glycerophosphoric acid | C3H9O6P | 356.97 | 27.377 | 0.935 | 1.448 | 0.002 |
17 | Isocitric acid | C6H8O7 | 245.03 | 29.212 | 0.913 | 1.602 | 0.001 |
18 | Suberic acid | C8H14O4 | 117.98 | 25.755 | 0.935 | 1.645 | <0.001 |
19 | Allose | C6H12O6 | 319.00 | 31.507 | 0.761 | 1.506 | 0.004 |
20 | 4⁃Chloropyridine⁃2,6⁃dicarboxylic Acid | C7H4ClNO4 | 258.97 | 38.004 | 0.935 | 1.219 | 0.026 |
21 | Conduritol⁃β⁃expoxide | C6H10O5 | 317.96 | 34.204 | 0.935 | 1.425 | 0.005 |
22 | Oxalacetic acid | C4H4O5 | 174.00 | 8.887 | 0.935 | 1.206 | 0.042 |
Pathway name | Total | Hits | P value | Impact |
---|---|---|---|---|
Glyoxylate and dicarboxylate metabolism | 32 | 4 | 0.00013 | 0.13493 |
Citrate cycle (TCA cycle) | 20 | 3 | 0.000612 | 0.25318 |
Alanine, aspartate and glutamate metabolism | 28 | 2 | 0.025050 | 0.09135 |
Table 2 DVT metabolic pathway analysis results
Pathway name | Total | Hits | P value | Impact |
---|---|---|---|---|
Glyoxylate and dicarboxylate metabolism | 32 | 4 | 0.00013 | 0.13493 |
Citrate cycle (TCA cycle) | 20 | 3 | 0.000612 | 0.25318 |
Alanine, aspartate and glutamate metabolism | 28 | 2 | 0.025050 | 0.09135 |
1 | Raskob G. E., Angchaisuksiri P., Blanco A. N., Buller H., Gallus A., Hunt B. J., Hylek E. M., Kakkar A., Konstantinides S. V., McCumber M., Ozaki Y., Wendelboe A., Weitz J. I., Arterioscler. Thromb. Vasc. Biol., 2014, 34(11), 2363—2371 |
2 | Liu Y. L., Zhao Y. J., Zhang G. H., Chinese J. Forensic Medicine, 2016, 31(4), 424—426 |
刘玉利, 赵一杰, 张国徽. 中国法医学杂志, 2016, 31(4), 424—426 | |
3 | Sung Y., Spagou K., Kafeza M., Kyriakides M., Dharmarajah B., Shalhoub J., Diaz J. A., Wakefield T. W., Holmes E., Davies A. H., Eur. J. Vasc. Endovasc. Surg., 2018, 55(5), 703—713 |
4 | Li X. Q., Zhang F. X., Wang S. M., Chinese Journal of Vascular Surgery(Electronic Version), 2017, 9(4), 250—257 |
李晓强, 张福先, 王深明. 中国血管外科杂志(电子版), 2017, 9(4), 250—257 | |
5 | Di Nisio M., Squizzato A., Rutjes A. W., Büller H. R., Zwinderman A. H., Bossuyt P. M., J. Thromb. Haemost., 2007, 5(2), 296—304 |
6 | Stroup B. M., Nair N., Murali S. G., Broniowska K., Rohr F., Levy H. L., Ney D. M., J. Nutr., 2018, 148(2), 194—201 |
7 | Taegtmeyer H., Circulation, 2016, 134(4), 265—266 |
8 | Sun J., Modern Chemical Research, 2017, (9), 4—5 |
孙静. 当代化工研究, 2017, (9), 4—5 | |
9 | Mizuno H., Ueda K., Kobayashi Y., Tsuyama N., Todoroki K., Min J. Z., Toyo'oka T., Biomed. Chromatogr., 2017, 31(1), e3864 |
10 | Guan T., Xin Y., Zheng K., Wang R. J., Zhang X., Jia S. Q., Li S. Q., Cao C., Zhao X. J., Biometals, 2021, 34(1), 33—48 |
11 | Tan B. B., Zhang Y., Zhang T. T., He J. S., Luo X. Y., Bian X. Q., Wu J. L., Zou C., Wang Y. Z., Fu L., Biomed. Chromatogr., 2020, 34(10), e4922 |
12 | Yang B. Y., Li X. L., Yao Y., Wang C., Chen S. N., Wu X. J., Wu D. P., J. Exp. Hematol., 2017, 25(6), 1585—1591 |
杨冰玉, 李晓莉, 姚遥, 王畅, 陈苏宁, 吴小津, 吴德沛. 中国实验血液学杂志, 2017, 25(6), 1585—1591 | |
13 | Liebal U. W., Phan A. N. T., Sudhakar M., Raman K., Blank L. M., Metabolites, 2020, 10(6), 243 |
14 | Wang W. Y., He Z. R., Kong Y., Liu Z. Q., Gong L. Z., Clin. Chim. Acta, 2021, 519, 10—17 |
15 | Baiges⁃Gaya G., Iftimie S., Castañé H., Rodríguez⁃Tomàs E., Jiménez⁃Franco A., López⁃Azcona A. F., Castro A., Camps J., Joven J., Biomolecules, 2023, 13(1), 163 |
16 | Jin Q. Q., Sun J. H., Du Q. X., Lu X. J., Zhu X. Y., Fan H. L., Hölscher C., Wang Y. Y., Int. J. Mol. Med., 2017, 40(4), 1019—1028 |
17 | Fan S., Kind T., Cajka T., Hazen S. L., Tang W. H. W., Kaddurah⁃Daouk R., Irvin M. R., Arnett D. K., Barupal D. K., Fiehn O., Anal. Chem., 2019, 91(5), 3590—3596 |
18 | Cao J., Lv X. G., Li Y., Jin Q. Q., Chu X. Y., Wang Y. Y., Sun J. H., J. Forensic Med., 2018, 34(3), 228—232 |
曹洁, 吕晓革, 李宇, 靳茜茜, 储晓云, 王英元, 孙俊红. 法医学杂志, 2018, 34(3), 228—232 | |
19 | Pan H., Exploring the Formation Mechanism of Deep Vein Thrombosis of Lower Extremities Based on Multi⁃omics Technology, Jilin University, Changchun, 2021 |
潘赫. 基于多组学技术探讨下肢深静脉血栓的形成机制, 长春: 吉林大学, 2021 | |
20 | Zhou Y. S., Qu J. L., Han Y. L., Chin. J. Cell Biol., 2023, 45(3), 428—435 |
周悦思, 曲家良, 韩英伦. 中国细胞生物学学报, 2023, 45(3), 428—435 | |
21 | Branchford B. R., Carpenter S. L., Front. Pediatr., 2018, 6, 142 |
22 | Kursa M. B., Rudnicki W. R., J. Stat. Softw., 2010, 36(11), 1—13 |
23 | Nian Y., Su X. X., Yue H., Zhu Y. J., Li J., Wang W. Q., Sheng Y. L., Ma Q., Liu J. K., Li X. W., Front. Plant Sci., 2024, 15, 1396183 |
[1] | ZHANG Yan, JIANG Xingjian, LIU Ming, ZHENG Zhi, ZHANG Yong. Predict Efficiency of Organic Solar Cell with Low Generalization Error Based on Molecular Property and Device Fabrication [J]. Chem. J. Chinese Universities, 2023, 44(7): 20230165. |
[2] | WONG Honho, LU Qiuyang, SUN Mingzi, HUANG Bolong. Rational Design of Graphdiyne-based Atomic Electrocatalysts: DFT and Self-validated Machine Learning [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220042. |
[3] | DU Jiahui, LIAO Kang, HONG Benkun, WANG Zhongye, MA Jing, LI Wei, LI Shuhua. Generalized Energy-based Fragmentation Clustering Algorithm for Localized Excited States [J]. Chem. J. Chinese Universities, 2021, 42(7): 2227. |
[4] | LI Wenwen, ZHU Airu, LONG Yijing, WANG Chunyan, HAN Yuanping, DUAN Yixiang. Metabolomics Study of Serum and Liver in Type 2 Diabetes Mice Induced by High Fat Diet with Vitamin D Deficiency† [J]. Chem. J. Chinese Universities, 2018, 39(11): 2395. |
[5] | HUANG Yu, GU Caiyun, WU Hanzhong, XIA Xiaoshuang, LI Xin. UPLC-QTOF-MS-based Metabolomics Study on Ischemic Stroke Patients† [J]. Chem. J. Chinese Universities, 2017, 38(10): 1742. |
[6] | LI Penghui, DENG Lingli, LUO Jiao, LI Wei, NING Jing, DING Jianhua, WU Xiaoping. EESI-MS Detection and Statistical Analysis of Multi-batch of Exhaled Breath Metabolomics Data of Liver Failure Patients [J]. Chem. J. Chinese Universities, 2016, 37(4): 626. |
[7] | ZHANG Ruixing, LIU Shu, PI Zifeng, SONG Fengrui, LIU Zhiqiang. Cell Metabolomics Study of Hg(Ⅱ) Ion Effect on the Metabolic Pathways of Cells [J]. Chem. J. Chinese Universities, 2014, 35(6): 1146. |
[8] | HUANG Min, GAO Jian-Yi, ZHAI Zhi-Gang, LIANG Qiong-Lin, WANG Yi-Ming, BAI Yan-Qiang, LUO Guo-An. Influence of Caffeine on the Sedative Effects of Promethazine Based on Pharmacokinetics and Metabolomics [J]. Chem. J. Chinese Universities, 2013, 34(4): 829. |
[9] | MEI Zhen, CAI Wen-Sheng, SHAO Xue-Guang. Rapid Analysis of Complex Samples by GC-MS with Immune Algorithm [J]. Chem. J. Chinese Universities, 2013, 34(4): 819. |
[10] | WU Sheng-Ming, FENG Bo, CHENG Jian-Hua, LI Hai-Jing, FANG Jun-Jian, YAN Xian-Zhong, WEI Lai, DONG Fang-Ting. GC/TOF-MS-based Analytical Method of Endogenous Metabolites for Mouse Serum [J]. Chem. J. Chinese Universities, 2012, 33(06): 1188. |
[11] | DONG Ji-Yang, LI Wei, DENG Ling-Li, XU Jing-Jing, Julian L. Griffin, CHEN Zhong*. New Variable Scaling Method for NMR-based Metabolomics Data Analysis [J]. Chem. J. Chinese Universities, 2011, 32(2): 262. |
[12] | SUN Shuo, ZHAI Yu-Juan, SUN Ye, ZHANG Yu-Pu, LIU He, WANG Xing-Hua*, YU Ai-Min, . Application of Ionic Liquid-non Polar Solvent Microwave Extraction to the Study of the Chemical Constituents from Roots of Panax ginseng C. M. Mey. [J]. Chem. J. Chinese Universities, 2010, 31(3): 468. |
[13] | HUANG Xin, GONG Yi-Fei, WANG Yi*, QU Hai-Bin, CHENG Yi-Yu. Metabonomic Study of Hepato-protective Effect of Silybin for the Carbon Tetrachloride Induced Liver Injure in Mice [J]. Chem. J. Chinese Universities, 2008, 29(4): 714. |
[14] | YI Lun-Zhao, LIANG Yi-Zeng, ZENG Zhong-Da, WANG Ping, YUAN Da-Lin. Comparative Analysis of Volatile Constituents in Chenpi of Different Original Plants by GC-MS and AMWFA [J]. Chem. J. Chinese Universities, 2006, 27(9): 1626. |
[15] |
LI Xiao-Ru, LIANG Yi-Ceng, YANG Hui, GUO Fang-Qiu, LI Xiao-Ning, ZENG Zhong-Da.
Chemical Component Study of Herb Pairs in Traditional Chinese Medicine --Analysis of Volatile Oil in Rhizoma Ligustici Chuanxiong-Radix Paeoniae Rubra by GC-MS and Chemometric Resolution Method [J]. Chem. J. Chinese Universities, 2006, 27(3): 443. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||