Chem. J. Chinese Universities ›› 2024, Vol. 45 ›› Issue (11): 20240324.doi: 10.7503/cjcu20240324
• Review • Previous Articles Next Articles
CAO Yiqing, HOU Jingxin, LIU Jianye, LI Yan()
Received:
2024-07-01
Online:
2024-11-10
Published:
2024-08-23
Contact:
LI Yan
E-mail:yanli@fudan.edu.cn
Supported by:
CLC Number:
TrendMD:
CAO Yiqing, HOU Jingxin, LIU Jianye, LI Yan. Advances and Challenges of Exosome Metabolomics in Body Fluids[J]. Chem. J. Chinese Universities, 2024, 45(11): 20240324.
Separation technique | Principle | Advantage | Disadvantage |
---|---|---|---|
Ultracentrifugation | Density | Mature method, “gold standard” | Expensive equipment, time⁃consuming(>4 h) |
Ultrafiltration | Size | Simple operation, suitable for small volumes | Low purity, affects exosome integrity |
Polymer precipitation | Solubility | Simple, no expensive equipment required | Low purity, affects exosome integrity |
Size exclusion chromatography | Size | High purity, good reproducibility | High maintenance cost, low concentration, requires additional concentration steps |
Ion exchange chromatography | Charge | High purity | Requires multiple optimizations, affects exosome integrity |
Immunoaffinity | Affinity | High purity, high specificity | High cost, not suitable for large⁃scale |
Microfluidic chip | Fluid dynamics | Automation and high throughput | High equipment cost, technical complexity |
Table 1 Methods for separating exosomes from body fluids
Separation technique | Principle | Advantage | Disadvantage |
---|---|---|---|
Ultracentrifugation | Density | Mature method, “gold standard” | Expensive equipment, time⁃consuming(>4 h) |
Ultrafiltration | Size | Simple operation, suitable for small volumes | Low purity, affects exosome integrity |
Polymer precipitation | Solubility | Simple, no expensive equipment required | Low purity, affects exosome integrity |
Size exclusion chromatography | Size | High purity, good reproducibility | High maintenance cost, low concentration, requires additional concentration steps |
Ion exchange chromatography | Charge | High purity | Requires multiple optimizations, affects exosome integrity |
Immunoaffinity | Affinity | High purity, high specificity | High cost, not suitable for large⁃scale |
Microfluidic chip | Fluid dynamics | Automation and high throughput | High equipment cost, technical complexity |
Nanomaterial | Mechanism of exosome separation | Target | Source of exosome | Analyte | Analysis platform | Ref. |
---|---|---|---|---|---|---|
CD9⁃HPLC⁃IAC | Antibody affinity | CD9 | Serum | Protein | LC⁃MS/MS | [ |
CoMPC@Au⁃Apt | Aptamer affinity | CD63 | Urine | Metabolite | MALDI⁃MS | [ |
TiO2 | Ti⁃O and phosphate groups interaction | Lipid bilayer | Serum | Protein | LC⁃MS/MS | [ |
Fe3O4@PDA@UiO⁃66⁃NH2 | Zr⁃O and phosphate groups interaction | Lipid bilayer | Urine | Phosphoryl⁃peptide | LC⁃MS/MS | [ |
Fe3O4@SiO2@Eu2O3 | Eu⁃O and phosphate groups interaction | Lipid bilayer | Plasma | Metabolite | LC⁃MS/MS | [ |
CaTiO3/Al3+/Pr3+/Sm3+ | CaTiO3, Al3+, Pr3+, Sm3+ and phosphate groups interaction | Lipid bilayer | Serum | Protein | MALDI⁃MS | [ |
Phospholipid⁃MIP | MIP recognition for phosphatidylserine(PS) | Lipid bilayer | Plasma | Protein | LC⁃MS/MS | [ |
Heparin⁃agarose beads | Heparin and proteoglycans interaction | Lipid bilayer | Plasma | RNA | RT⁃qPCR | [ |
EXODUS | Size exclusion | — | Plasma | Metabolite | LC⁃MS/MS | [ |
SNAPs | Size exclusion | — | Urine | Protein | LC⁃MS/MS | [ |
Table 2 Nanomaterials for exosome isolation
Nanomaterial | Mechanism of exosome separation | Target | Source of exosome | Analyte | Analysis platform | Ref. |
---|---|---|---|---|---|---|
CD9⁃HPLC⁃IAC | Antibody affinity | CD9 | Serum | Protein | LC⁃MS/MS | [ |
CoMPC@Au⁃Apt | Aptamer affinity | CD63 | Urine | Metabolite | MALDI⁃MS | [ |
TiO2 | Ti⁃O and phosphate groups interaction | Lipid bilayer | Serum | Protein | LC⁃MS/MS | [ |
Fe3O4@PDA@UiO⁃66⁃NH2 | Zr⁃O and phosphate groups interaction | Lipid bilayer | Urine | Phosphoryl⁃peptide | LC⁃MS/MS | [ |
Fe3O4@SiO2@Eu2O3 | Eu⁃O and phosphate groups interaction | Lipid bilayer | Plasma | Metabolite | LC⁃MS/MS | [ |
CaTiO3/Al3+/Pr3+/Sm3+ | CaTiO3, Al3+, Pr3+, Sm3+ and phosphate groups interaction | Lipid bilayer | Serum | Protein | MALDI⁃MS | [ |
Phospholipid⁃MIP | MIP recognition for phosphatidylserine(PS) | Lipid bilayer | Plasma | Protein | LC⁃MS/MS | [ |
Heparin⁃agarose beads | Heparin and proteoglycans interaction | Lipid bilayer | Plasma | RNA | RT⁃qPCR | [ |
EXODUS | Size exclusion | — | Plasma | Metabolite | LC⁃MS/MS | [ |
SNAPs | Size exclusion | — | Urine | Protein | LC⁃MS/MS | [ |
Exosome source | Isolation method | Metabolomic profiling | Disease type | Application | Ref. |
---|---|---|---|---|---|
Plasma | Differential ultracentrifugation | UHPLC⁃Q⁃TOF⁃MS/MS | Nonalcoholic fatty liver disease(NAFLD) | A distinct change in fatty acids and related pathways in nonalcoholic fatty liver disease patients | [ |
Plasma | Ultracentrifugation | LC⁃MS | Breast cancer | Targeting succinic acid and L⁃lactic acid in patients with RD after NAC to improve their disease course | [ |
Plasma | A home⁃constructed device called EXODUS | UPLC⁃MS/MS | Esophageal squamous cell carcinoma | Novel biomarkers for diagnosis and prognosis of ESCC | [ |
Plasma | Invitrogen total exosome isolation kit | UPLC⁃TOF⁃MS/MS | COVID⁃19 | GM3⁃enriched exosomes may partake in pathological processes related to COVID⁃19 pathogenesis | [ |
Serum | Ultracentrifugation | LC⁃MS/MS | Castration resistant prostate cancer(CRPC) | Diagnostic TFC, PCa and CRPC by differential metabolites | [ |
Serum | Size exclusion chromatography | UPLC⁃MS/MS | High⁃altitude cerebral edema(HACE) | Distinguish the HCs and HACE patients | [ |
Serum | qEV column | UPLC⁃MS/MS | Acute mountain sicknesses | Identified 5 metabolites to distinguish hypoxic preconditioning participants and control subjects | [ |
Serum | ExoQuick, a fast⁃ acting exosome precipitation solution | UPLC⁃MS/MS | Diabetic nephropathy(DN) and diabetic retinopathy(DR) | 1⁃MH loss may be linked to the pathogenicity of diabetic endothelial dysfunction in DR/DN | [ |
Serum | qEV column | UPLC⁃MS/MS | Bipolar disorder | 15 Exosomal metabolites to distinguish BD patients and other major psychiatric diseases | [ |
Urine | MXene@TiO2/Fe3O4 | LDI MS | Bladder cancer | Three biomarkers are indication of treatment in individual patients | [ |
Urine | HPL⁃SEC | MALDI⁃TOF MS | Systemic lupus erythematosus(SLE) | Screen differential expressions of metabolite signals in the HC and SLE groups | [ |
Urine | Serial centrifugation | MS | Prostate cancer | Potential prostate cancer biomarkers | [ |
Urine | Ultracentrifuged | UHPLC⁃MS | Prostate cancer | Distinguish prostate cancer pathogenesis and progression | [ |
Urine | Ultracentrifuged | 1H NMR | Cardiovascular risk | Three metabolites can be CV risk biomarkers | [ |
Tissue and urine | Ultrafiltration and ultracentrifugation | LC⁃ESI⁃MS/MS | Prostate cancer | Prove uEVs are potential prostate cancer biomarkers | [ |
Pleural effusions | Differential ultracentrifugation | LC⁃MS/MS | Tuberculosis and malignancy | Identifying novel biomarkers for diagnosing TPE and MPE | [ |
Frontal cortex tissues | Ultracentrifuged | nESI⁃ UHRAMS and HCD⁃MS/MS | AD | AD BDEVs have a unique lipid signature | [ |
Follicular fluid | Exosomes Isolation Reagent and Ultracentrifugation | GC⁃TOFMS | — | Reveal age⁃related changes in ovarian follicular fluid | [ |
Bile juice | EX⁃03 kit | UPLC⁃Orbitrap⁃MS | Gallbladder cancers(GBCCs) | Activation of PI3K/AKT pathway is found in the gallbladder cancer group | [ |
Femoral bone tissue | Ultracentrifugation | UPLC⁃MS/MS | Osteonecrosis of the femoral head (ONFH) | Lipid metabolism disorder is an important pathological factor in ONFH | [ |
Table 3 Applications of exosome metabolomics in disease research across different types of body fluids
Exosome source | Isolation method | Metabolomic profiling | Disease type | Application | Ref. |
---|---|---|---|---|---|
Plasma | Differential ultracentrifugation | UHPLC⁃Q⁃TOF⁃MS/MS | Nonalcoholic fatty liver disease(NAFLD) | A distinct change in fatty acids and related pathways in nonalcoholic fatty liver disease patients | [ |
Plasma | Ultracentrifugation | LC⁃MS | Breast cancer | Targeting succinic acid and L⁃lactic acid in patients with RD after NAC to improve their disease course | [ |
Plasma | A home⁃constructed device called EXODUS | UPLC⁃MS/MS | Esophageal squamous cell carcinoma | Novel biomarkers for diagnosis and prognosis of ESCC | [ |
Plasma | Invitrogen total exosome isolation kit | UPLC⁃TOF⁃MS/MS | COVID⁃19 | GM3⁃enriched exosomes may partake in pathological processes related to COVID⁃19 pathogenesis | [ |
Serum | Ultracentrifugation | LC⁃MS/MS | Castration resistant prostate cancer(CRPC) | Diagnostic TFC, PCa and CRPC by differential metabolites | [ |
Serum | Size exclusion chromatography | UPLC⁃MS/MS | High⁃altitude cerebral edema(HACE) | Distinguish the HCs and HACE patients | [ |
Serum | qEV column | UPLC⁃MS/MS | Acute mountain sicknesses | Identified 5 metabolites to distinguish hypoxic preconditioning participants and control subjects | [ |
Serum | ExoQuick, a fast⁃ acting exosome precipitation solution | UPLC⁃MS/MS | Diabetic nephropathy(DN) and diabetic retinopathy(DR) | 1⁃MH loss may be linked to the pathogenicity of diabetic endothelial dysfunction in DR/DN | [ |
Serum | qEV column | UPLC⁃MS/MS | Bipolar disorder | 15 Exosomal metabolites to distinguish BD patients and other major psychiatric diseases | [ |
Urine | MXene@TiO2/Fe3O4 | LDI MS | Bladder cancer | Three biomarkers are indication of treatment in individual patients | [ |
Urine | HPL⁃SEC | MALDI⁃TOF MS | Systemic lupus erythematosus(SLE) | Screen differential expressions of metabolite signals in the HC and SLE groups | [ |
Urine | Serial centrifugation | MS | Prostate cancer | Potential prostate cancer biomarkers | [ |
Urine | Ultracentrifuged | UHPLC⁃MS | Prostate cancer | Distinguish prostate cancer pathogenesis and progression | [ |
Urine | Ultracentrifuged | 1H NMR | Cardiovascular risk | Three metabolites can be CV risk biomarkers | [ |
Tissue and urine | Ultrafiltration and ultracentrifugation | LC⁃ESI⁃MS/MS | Prostate cancer | Prove uEVs are potential prostate cancer biomarkers | [ |
Pleural effusions | Differential ultracentrifugation | LC⁃MS/MS | Tuberculosis and malignancy | Identifying novel biomarkers for diagnosing TPE and MPE | [ |
Frontal cortex tissues | Ultracentrifuged | nESI⁃ UHRAMS and HCD⁃MS/MS | AD | AD BDEVs have a unique lipid signature | [ |
Follicular fluid | Exosomes Isolation Reagent and Ultracentrifugation | GC⁃TOFMS | — | Reveal age⁃related changes in ovarian follicular fluid | [ |
Bile juice | EX⁃03 kit | UPLC⁃Orbitrap⁃MS | Gallbladder cancers(GBCCs) | Activation of PI3K/AKT pathway is found in the gallbladder cancer group | [ |
Femoral bone tissue | Ultracentrifugation | UPLC⁃MS/MS | Osteonecrosis of the femoral head (ONFH) | Lipid metabolism disorder is an important pathological factor in ONFH | [ |
1 | Raposo G., Stahl P. D., Nat. Rev. Mol. Cell Biol., 2019, 20(9), 509—510 |
2 | Margolis L., Sadovsky Y., PLoS Biol., 2019, 17(7), e3000363 |
3 | Yan H., Li Y. T., Cheng S. B., Zeng Y., Anal. Chem., 2021, 93(11), 4739—4774 |
4 | van Niel G., D’Angelo G., Raposo G., Nat. Rev. Mol. Cell Biol., 2018, 19(4), 213—228 |
5 | Fordjour F. K., Daaboul G. G., Gould S. J., J. Bilo. Chem., 2022, 298(10), 102394 |
6 | Gurung S., Perocheau D., Touramanidou L., Baruteau J., Cell Commun. Signal., 2021, 19(1), 47 |
7 | Ibrahim A., Marbán E., Annu. Rev. Physiol., 2016, 78(1), 67—83 |
8 | Qin J., Xu Q., Acta Pol. Pharm., 2014, 71(4), 537—543 |
9 | Lakhal S., Wood M. J. A., BioEssays, 2011, 33(10), 737—741 |
10 | Ratajczak M. Z., Ratajczak J., Leukemia, 2020, 34(12), 3126—3135 |
11 | Pathan M., Fonseka P., Chitti S. V., Kang T., Sanwlani R., van Deun J., Hendrix A., Mathivanan S., Nucleic Acids Res., 2019, 47(D1), D516—D519 |
12 | Doyle L. M., Wang M. Z., Cells, 2019, 8(7), 727 |
13 | Jurj A., Zanoaga O., Braicu C., Sevastre A. S., Irimie A., Cojocneanu R., Pavel I. Z., Gherman C. D., Berindan⁃Neagoe I., Mol. Cancer, 2020, 19, 58 |
14 | Harding C., Stahl P., Biochem. Biophys. Res. Commun., 1983, 113(2), 650—658 |
15 | Pan B. T., Johnstone R. M., Cell, 1983, 33(3), 967—978 |
16 | Johnstone R. M., Adam M., Hammond J. R., Orr L., Turbide C., J. Biol. Chem., 1987, 262(19), 9412—9420 |
17 | Li J., Zhang Y., Dong P. Y., Yang G. M., Gurunathan S., Biomed. Pharmacother., 2023, 165, 115087 |
18 | Thery C., F1000 Biol. Rep., 2011, 3, 15 |
19 | Tkach M., Kowal J., Zucchetti A. E., Enserink L., Jouve M., Lankar D., Saitakis M., Martin⁃Jaular L., Théry C., EMBO J., 2017, 36(20), 3012—3028 |
20 | Sobo⁃Vujanovic A., Munich S., Vujanovic N. L., Cell Immunol., 2014, 289(1/2), 119—127 |
21 | Guan S. S., Li Q. R., Liu P. P., Xuan X. Y., Du Y., Cent. Eur. J. Immunol., 2014, 39(2), 142—151 |
22 | Chernomordik L. V., Melikyan G. B., Chizmadzhev Y. A., Biochim. Biophys. Acta, 1987, 906(3), 309—352 |
23 | Jahn R., Südhof T. C., Annu. Rev. Biochem., 1999, 68, 863—911 |
24 | Prada I., Meldolesi J., Int. J. Mol. Sci., 2016, 17(8), 1296 |
25 | Joshi B. S., de Beer M. A., Giepmans B. N. G., Zuhorn I. S., ACS Nano, 2020, 14(4), 4444—4455 |
26 | Tian T., Zhu Y. L., Hu F. H., Wang Y. Y., Huang N. P., Xiao Z. D., J. Cell Physiol., 2013, 228(7), 1487—1495 |
27 | Tian T., Wang Y. Y., Wang H. T., Zhu Z. Q., Xiao Z. D., J. Cell Biochem., 2010, 111(2), 488—496 |
28 | Derkus B., Emregul K. C., Emregul E., Cell Biol. Int., 2017, 41(5), 466—475 |
29 | Boukouris S., Mathivanan S., Proteom. Clin. Appl., 2015, 9(3/4), 358—367 |
30 | Alegre E., Zubiri L., Perez⁃Gracia J. L., Gonzalez⁃Cao M., Soria L., Martin⁃Algarra S., Gonzalez A., Clin. Chim. Acta, 2016, 454, 28—32 |
31 | Altadill T., Campoy I., Lanau L., Gill K., Rigau M., Gil⁃Moreno A., Reventos J., Byers S., Colas E., Cheema A. K., PLoS One, 2016, 11(3), e0151339 |
32 | Vaiselbuh S. R., Cancer Res. Front., 2015, 1, 11—24 |
33 | Bhargava P., Anthony D., Mult. Scler., 2020, 26(5), 591—598 |
34 | Gallart⁃Ayala H., Teav T., Ivanisevic J., Bioessays, 2020, 42(12), e2000052 |
35 | Ma G. C., Wang T. S., Wang J., Feng Y. Q., Biomed. Chromatogr., 2020, 34(3), e4739 |
36 | Williams C., Palviainen M., Reichardt N. C., Siljander P. R., Falcón⁃Pérez J. M., Metabolites, 2019, 9(11), 276 |
37 | Guo W., Ying P. Y., Ma R. Y., Jing Z. Q., Ma G., Long J., Li G. C., Liu Z., Cytokine Growth Factor Rev., 2023, 73, 69—77 |
38 | Royo F., Théry C., Falcón⁃Pérez J. M., Nieuwland R., Witwer K. W., Cells, 2020, 9(9), 1955 |
39 | Yang Y. M., Choi S., Chae J., Microfluid. Nanofluid., 2010, 8(4), 477—484 |
40 | Lin B. Q., Lei Y. M., Wang J. X., Zhu L., Wu Y. Q., Zhang H. M., Wu L. L., Zhang P., Yang C. Y., Small Methods, 2021, 5(3), e2001131 |
41 | Gurunathan S., Kang M. H., Jeyaraj M., Qasim M., Kim J. H., Cells, 2019, 8(4), 307 |
42 | Abhange K., Makler A., Wen Y., Ramnauth N., Mao W. J., Asghar W., Wan Y., Bioact. Mater., 2021, 6(11), 3705—3743 |
43 | Zhang L., Wang H. Y., Zhao G. F., Li N., Wang X. F., Li Y. M., Jia Y. C., Qiao X. Q., Anal. Chem., 2021, 93(16), 6534—6543 |
44 | Yang K. G., Jia M. Q., Cheddah S., Zhang Z. Y., Wang W. W., Li X. Y., Wang Y., Yan C., Bioact. Mater., 2021, 15, 343—354 |
45 | Jiao F. L., Gao F. Y., Liu Y. Y., Fan Z. Y., Xiang X. C., Xia C. S., Lv Y. Y., Xie Y. P., Bai H. H., Zhang W. J., Qin W. J., Qian X. H., Talanta, 2021, 223, 121776 |
46 | Yoshioka Y., Kosaka N., Konishi Y., Ohta H., Okamoto H., Sonoda H., Nonaka R., Yamamoto H., Ishii H., Mori M., Furuta K., Nakajima T., Hayashi H., Sugisaki H., Higashimoto H., Kato T., Takeshita F., Ochiya T., Nat. Commun., 2014, 5, 3591 |
47 | Balaj L., Atai N. A., Chen W. L., Mu D., Tannous B. A., Breakefield X. O., Skog J., Maguire C. A., Sci. Rep., 2015, 5, 10266 |
48 | Samsonov R., Shtam T., Burdakov V., Glotov A., Tsyrlina E., Berstein L., Nosov A., Evtushenko V., Filatov M., Malek A., Prostate, 2016, 76(1), 68—79 |
49 | Conde⁃Vancells J., Rodriguez⁃Suarez E., Embade N., Gil D., Matthiesen R., Valle M., Elortza F., Lu S. C., Mato J. M., Falcom⁃Perez J. M., J. Proteome. Res., 2008, 7(12), 5157—5166 |
50 | Li P., Kaslan M., Lee S. H., Yao J., Gao Z. Q., Theranostics, 2017, 7(3), 789—804 |
51 | Zhu J. H., Zhang J., Ji X. H., Tan Z. J., Lubman D. M., J. Proteome. Res., 2021, 20(10), 4901—4911 |
52 | Chen H. L., Huang C. W., Wu Y. L., Sun N. R., Deng C. H., ACS Nano, 2022, 16(8), 12952—12963 |
53 | Gao F. Y., Jiao F. L., Xia C. S., Zhao Y., Ying W. T., Xie Y. P., Guan X. Y., Tao M., Zhang Y. J., Qin W. J., Qian X. H., Chem. Sci., 2018, 10(6), 1579—1588 |
54 | Zhao L. P., Shi J. H., Chang L., Wang Y. H., Liu S., Li Y., Zhang T., Zuo T., Fu B., Wang G. B., Ruan Y. Y., Zhang Y. L., Xu P., ACS Omega, 2021, 6(1), 827—835 |
55 | Zhang N., Sun N. R., Deng C. H., Chem. Commun., 2020, 56(90), 13999—14002 |
56 | Wu G. Y., Lu F., Zhao J. L., Feng X., Ren Y. J., Hu S. T., Yu. W. J., Dong B., Hu L. H., J. Chromatogr. A, 2024, 1714, 464—543 |
57 | Wu G. Y., Geng H. C., Xu R. F., Deng M., Yang C. C., Xun C. F., Wang Y., Cai Q. Y., Chen P., Talanta, 2021, 226, 122186 |
58 | Zhou J. T., Cheng X. H., Guo Z. C., Ali M. M., Zhang G. Y., Tao W. A., Hu L. H., Liu Z., Angew. Chem. Int. Ed., 2023, 62(19), e202213938 |
59 | Lou D. D., Shi K. Q., Li H. P., Zhu Q. F., Hu L., Luo J. X., Yang R., Liu F., J. Nanobiotechnol., 2022, 20(1), 52 |
60 | Li Y. L., Yang K. G., Yuan H. M., Zhang W. J., Sui Z. G., Wang N., Lin H. L., Zhang L. H., Zhang Y. K., Anal. Chem., 2021, 93(50), 16835—16844 |
61 | Cai S., Luo B., Jiang P. P., Zhou X. X., Lan F., Yi Q. Y., Wu Y., Nanoscale, 2018, 10(29), 14280—14289 |
62 | Chang M. M., Wang Q. Q., Qin W. S., Shi X. Z., Xu G. W., Anal. Chem., 2020, 92(23), 15497—15505 |
63 | Agudiez M., Martinez P. J., Martin⁃Lorenzo M., Heredero A., Santiago⁃Hernandez A., Molero D., Garcia⁃Segura J. M., Aldamiz⁃Echevarria G., Alvarez⁃Llamas G., BMC Biol., 2020, 18(1), 192 |
64 | Clos⁃Garcia M., Loizaga⁃Iriarte A., Zuñiga⁃Garcia P., Sanchez⁃Mosquera P., Cortazar A.R., Gonzalez E., Torrano V., Alonso C., Perez⁃Cormenzana M., Ugalde⁃Olano A., Lacasa⁃Viscasillas I., Castro A., Royo F., Unda M., Carracedo A., Falcon⁃Perez J. M., J. Extracell. Vesicles, 2018, 7(1), 1470442 |
65 | Yang Q. S., Luo J. X., Xu H., Huang L., Zhu X. X., Li H. R., Yang R., Peng B., Sun D., Zhu Q. F., Liu F., J. Nanobiotechnol., 2023, 21(1), 153 |
66 | Jiang W. Y., Jin Q. F., Li C. Q., Xun Y. H., Turk. J. Gastroenterol., 2024, 35(2), 125—135 |
67 | Liu P. Y., Wang W. X., Wang F., Fan J. Q., Guo J. N., Wu T., Lu D. L., Zhou Q. C., Liu Z. H., Wang Y. L., Shang Z. Q., Chan F. L., Yang W., Li X., Zhao S. C., Zheng Q. Y., Wu D. L., J. Transl. Med., 2023, 21(1), 40 |
68 | Joshi S., Garlapati C., Bhattarai S., Su Y. X., Rios⁃Colon L., Deep G., Torres M. A., Aneja R., Int. J. Mol. Sci., 2022, 23(10), 5324 |
69 | Tang Q., Fan F. C., Chen L., Chen Y. W., Yuan L., Wang L. L., Xu H., Zhang Y., Cheng Y., Sci. Rep., 2024, 14(1), 11585 |
70 | Fan F. C., Du Y., Chen L., Chen Y. W., Zhong Z. F., Li P., Cheng Y., Wang L., Jiang W., Oxid. Med. Cell Longev., 2023, 2023, 5509913 |
71 | Yang J., Liu D. W., Liu Z. S., Front. Endocrinol., 2022, 13, 830466 |
72 | Loras A., Trassierra M., Sanjuan⁃Herráez D., Martinez⁃Bisbal M. C., Castell J. V., Quintas G., Ruiz⁃Cerda J. L., Sci. Rep., 2018, 8, 9172 |
73 | Lima A. R., Bastos M. D. L., Carvalho M., de Pinho P. G., Transl. Oncol., 2016, 9(4), 357—370 |
74 | Al⁃Daffaie F. M., Al⁃Mudhafar S. F., Alhomsi A., Tarazi H., Almehdi A. M., El⁃Huneidi W., Abu⁃Gharbieh E., Bustanji Y., Alqudah M. A. Y., Abuhelwa A. Y., Guella A., Alzoubi K. H., Semreen M. H., Int. J. Mol. Sci., 2024, 25(10), 5071 |
75 | Posada⁃Ayala M., Zubiri I., Martin⁃Lorenzo M., Sanz⁃Maroto A., Molero D., Gonzales⁃Calero L., Fernandez⁃Fernandez B., de la Cuesta F., Laborde C. M., Barderas M. G., Ortiz A., Vivanco F., Alvarez⁃Loama G., Kidney Int., 2014, 85(1), 103—111 |
76 | Skotland T., Ekroos K., Kauhanen D., Simolin H., Seierstad T., Berge V., Sandvig K., Llorente A., Eur. J. Cancer, 2017, 70, 122—132 |
77 | Shi C. F., Liu D. D., He A. Q., Wu X. M., Shen X. J., Zhu X. T., Xue Y., Yang J. W., Zhou Y., Chin. J. Pathophysiol., 2023, 39(7), 1244—1252 |
石彩凤, 刘丹丹, 何爱琴, 吴小梅, 沈新佳, 朱雪婷, 薛颖, 杨俊伟, 周阳. 中国病理生理杂志, 2023, 39(7), 1244—1252 | |
78 | Rohit A., Stapleton F., Brown S. H. J., Mitchell T. W., Willcox M. D. P., Optom. Vis. Sci., 2014, 91(12), 1391—1395 |
79 | Botello⁃Marabotto M., Martínez⁃Bisbal M. C., Piazo⁃Durán M. D., Martinez⁃Manez R., Talanta, 2024, 273, 125826 |
80 | Yazdani M., Elgstøen K. B. P, Rootwelt H., Shahdadfar A., Utheim O. A., Utheim T. P., Int. J. Mol. Sci., 2019, 20(15), 3755 |
81 | Khanna R. K., Catanese S., Emond P., Corcia P., Blasco H., Pisella P. J., Surv. Ophthalmol., 2022, 67(4), 1229—1243 |
82 | Lam C. W., Law C. Y., J. Proteome Res., 2014, 13(9), 4040—4046 |
83 | Li N., Mao W. M., Gao Y., Wang D., Song Z. B., Chen Z. J., J. Pharm. Biomed. Anal., 2021, 202, 114147 |
84 | Luo P., Mao K. M., Xu J. J., Wu F., Wang X., Wang S. F., Zhou M., Duan L. M., Tan Q., Ma G. Z., Yang G. H., Du R. H., Huang H., Huang Q., Li Y. M., Guo M. F., Jin Y., J. Extracell. Vesicles, 2020, 9(1), 1790158 |
85 | van der Velpen V., Teav T., Gallart⁃Ayala H., Mehl F., Konz I., Clark C., Oikonomidi A., Peyratout G., Henry H., Delorenzi M., Ivanisevic J., Popp J., Alzheimers Res. Ther., 2019, 11(1), 93 |
86 | Su H. Q., Rustam Y. H., Masters C. L., Makalic E., McLean C. A., Hill A. F., Barnham K. J., Reid G. E., Vella L. J., J. Extracell. Vesicles, 2021, 10(7), e12089 |
87 | Zhu Q. F., Huang L., Yang Q. S., Ao A., Yang R., Krzesniak J., Lou D. D., Hu L., Dai X. D., Guo F., Liu F., Nanoscale, 2021, 13(39), 16457—16464 |
88 | Song J. W., Lam S. M., Fan X., Cao W. J., Wang S. Y., Tian H., Chua G. H., Zhang C., Meng F. P., Xu Z., Fu J. L., Huang L., Xia P., Yang T., Zhang S. H., Li B. W., Jiang T. J., Wang R. X., Wang Z. H., Shi M., Zhan J. Y., Wang F. S., Shui G. H., Cell Metab., 2020, 32(2), 188—202.e5 |
89 | Du Y., Dong J. H., Chen L., Liu H., Zheng G. E., Chen G. Y., Cheng Y., Oxid. Med. Cell Longev., 2022, 2022, 5717445 |
90 | Chen H. L., Qi Y., Yang C. Y., Tai Q. F., Zhang M., Shen X. Z., Deng C. H., Guo J. M., Jiang S., Sun N. R., ACS Nano, 2023, 17(23), 23924—23935 |
91 | Yan S. H., Huang Z. Z., Chen X. F., Chen H. L., Yang X., Gao M. X., Zhang X. M., Anal. Bioanal. Chem., 2023, 415(26), 6411—6420 |
92 | Ding T., He W. X., Yan H., Wei Z., Zeng X. F., Hao X. K., Clin. Chim. Acta, 2024, 556, 117845 |
93 | Gu Y. Q., Zhang X. Y., Wang R. X., Wei Y. Y., Peng H. Wang K., LI H., Ji Y. Z., Eur. J. Med. Res., 2024, 29(1), 4 |
94 | Kong M. Y., Hong D. H., Paudel S., Yoon N. E., Jung B. H., Kim M., Kim T. H., Jeong J., Choi D., Lee H., Biochem. Biophys. Res. Commun., 2024, 705, 149724 |
95 | Guo M. K., Zhang J., Metabolomics, 2023, 19(4), 34 |
[1] | HOU Zejin, LI Rongqi, LI Jian, FENG Yining, JIN Qianqian, SUN Junhong, CAO Jie. Prediction of Deep Vein Thrombosis Based on GC-MS and Machine Learning [J]. Chem. J. Chinese Universities, 2024, 45(9): 20240199. |
[2] | JIN Ying, ZHANG Junjie, ZHANG Yixin, YUAN Yue, HAN Zhenzhen. Research Progress in Exosome Isolation and Proteomics Analysis [J]. Chem. J. Chinese Universities, 2024, 45(11): 20240305. |
[3] | HUO Zhiyuan, ZHOU Jinping, MA Xiumin, ZHOU Yan, HUANG Lin. Advances in Single-cell Multi-omics Analysis Based on Mass Spectrometry [J]. Chem. J. Chinese Universities, 2024, 45(11): 20240389. |
[4] | TANG Yujing, HU Min, WANG Xia, WANG Qigang. Advances in Enzyme-load Nanocatalytic Systems for Disease Detection and Treatment [J]. Chem. J. Chinese Universities, 2022, 43(12): 20220640. |
[5] | HUANG Ling, ZHUANG Zijian, LI Xiang, SHI Muling, LIU Gaoqiang. Advances in Molecular Recognition of Exosomes Based on Aptamers [J]. Chem. J. Chinese Universities, 2021, 42(11): 3493. |
[6] | XI Jing, CHEN Na, YANG Yanbing, YUAN Quan. Recent Progress in Controlled Synthesis of Persistent Luminescence Nanomaterials for Diagnosis Applications [J]. Chem. J. Chinese Universities, 2021, 42(11): 3247. |
[7] | HE Yu, XIA Qian, WANG Wenli, LUO Fang, CHEN Jinfeng, GUO Yating, WANG Jian, LIN Zhenyu, CHEN Guonan. Triglycerides as Potential Biomarkers for Pesticides Pollution in Aquatic Environment Using UPLC-QTOF-MS [J]. Chem. J. Chinese Universities, 2020, 41(3): 431. |
[8] | ZHANG Yimeng, ZHANG Huixin, LIU Yang. Recent Advances of Exosomes Bioanalysis and Their Clinic Applications [J]. Chem. J. Chinese Universities, 2020, 41(11): 2306. |
[9] | LI Wenwen, ZHU Airu, LONG Yijing, WANG Chunyan, HAN Yuanping, DUAN Yixiang. Metabolomics Study of Serum and Liver in Type 2 Diabetes Mice Induced by High Fat Diet with Vitamin D Deficiency† [J]. Chem. J. Chinese Universities, 2018, 39(11): 2395. |
[10] | XIE Yan, CHEN Jia, XU Bin, YAN Long, TANG Jijun, XIE Jianwei. Studies on Poisoning Characteristics of Phosphylated Oxime on AChE and Efficacy of Reactivators Based on Quantitative Determination of Effect Biomarkers by Liquid Chromatograph-mass Spectrometry† [J]. Chem. J. Chinese Universities, 2017, 38(5): 758. |
[11] | HUANG Yu, GU Caiyun, WU Hanzhong, XIA Xiaoshuang, LI Xin. UPLC-QTOF-MS-based Metabolomics Study on Ischemic Stroke Patients† [J]. Chem. J. Chinese Universities, 2017, 38(10): 1742. |
[12] | LI Penghui, DENG Lingli, LUO Jiao, LI Wei, NING Jing, DING Jianhua, WU Xiaoping. EESI-MS Detection and Statistical Analysis of Multi-batch of Exhaled Breath Metabolomics Data of Liver Failure Patients [J]. Chem. J. Chinese Universities, 2016, 37(4): 626. |
[13] | ZHANG Ruixing, LIU Shu, PI Zifeng, SONG Fengrui, LIU Zhiqiang. Cell Metabolomics Study of Hg(Ⅱ) Ion Effect on the Metabolic Pathways of Cells [J]. Chem. J. Chinese Universities, 2014, 35(6): 1146. |
[14] | LI Xue, FANG Xiao-Wei, LI Yin-Ping, CHEN Huan-Wen. Detection of Hydroxylated Metabolites of Polycyclic Aromatic Hydrocarbons by Electrospray Ionization Ion Trap Tandem Mass Spectrometry [J]. Chem. J. Chinese Universities, 2013, 34(8): 1840. |
[15] | HUANG Min, GAO Jian-Yi, ZHAI Zhi-Gang, LIANG Qiong-Lin, WANG Yi-Ming, BAI Yan-Qiang, LUO Guo-An. Influence of Caffeine on the Sedative Effects of Promethazine Based on Pharmacokinetics and Metabolomics [J]. Chem. J. Chinese Universities, 2013, 34(4): 829. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||