Chem. J. Chinese Universities ›› 2024, Vol. 45 ›› Issue (5): 20240095.doi: 10.7503/cjcu20240095
• Article: Inorganic Chemistry • Previous Articles
SONG Yuhang1, LIU Zhan1, LYU Jiamin1, YU Shen1, LI Xiaoyun2, SUN Minghui1(), CHEN Lihua1(
), SU Baolian1,3
Received:
2024-02-24
Online:
2024-05-10
Published:
2024-03-25
Contact:
SUN Minghui, CHEN Lihua
E-mail:sunminghui@whut.edu.cn;chenlihua@whut.edu.cn
Supported by:
CLC Number:
TrendMD:
SONG Yuhang, LIU Zhan, LYU Jiamin, YU Shen, LI Xiaoyun, SUN Minghui, CHEN Lihua, SU Baolian. Synergistic Effects of Hierarchically Interconnected Porous Structure and Fe Modification on Zeolite ZSM-5 for Efficient Benzyl Alcohol Alkylation[J]. Chem. J. Chinese Universities, 2024, 45(5): 20240095.
Sample | SBET/(m2·g-1) | Smicro/(m2·g-1) | Smeso/(m2·g-1) | Vp/(cm3·g-1) | Vmeso/(cm3·g-1) | Relative crystallinity(%) | Fe ICP(%) | n(Si)/n(Al) ICP |
---|---|---|---|---|---|---|---|---|
HZSM⁃5 | 354.8 | 176.3 | 178.2 | 0.30 | 0.22 | 100 | 0 | 90 |
HZSM⁃5⁃0.5%Fe | 340.4 | 184.0 | 156.4 | 0.26 | 0.18 | 103 | 0.51 | 87 |
HZSM⁃5⁃1%Fe | 316.0 | 182.3 | 133.7 | 0.23 | 0.13 | 98 | 0.79 | 95 |
HZSM⁃5⁃2%Fe | 298.9 | 182.4 | 116.5 | 0.20 | 0.11 | 85 | 1.43 | 105 |
Table 1 Pore structure parameters, relative crystallinity, Si/Al molar ratios and Fe content of hierarchical HZSM-5 and Fe/HZSM-5 zeolites
Sample | SBET/(m2·g-1) | Smicro/(m2·g-1) | Smeso/(m2·g-1) | Vp/(cm3·g-1) | Vmeso/(cm3·g-1) | Relative crystallinity(%) | Fe ICP(%) | n(Si)/n(Al) ICP |
---|---|---|---|---|---|---|---|---|
HZSM⁃5 | 354.8 | 176.3 | 178.2 | 0.30 | 0.22 | 100 | 0 | 90 |
HZSM⁃5⁃0.5%Fe | 340.4 | 184.0 | 156.4 | 0.26 | 0.18 | 103 | 0.51 | 87 |
HZSM⁃5⁃1%Fe | 316.0 | 182.3 | 133.7 | 0.23 | 0.13 | 98 | 0.79 | 95 |
HZSM⁃5⁃2%Fe | 298.9 | 182.4 | 116.5 | 0.20 | 0.11 | 85 | 1.43 | 105 |
Sample | Temperature peak/℃ | Weak acidity a /(mmol·g-1) | Strong acidity b /(mmol·g-1) | Total acidity/(mmol·g-1) | ||
---|---|---|---|---|---|---|
Peak A | Peak B | Peak C | ||||
HZSM⁃5 | 111.3 | 176.1 | 427.8 | 0.669 | 0.573 | 1.940 |
HZSM⁃5⁃0.5%Fe | 118.4 | 187.0 | 428.3 | 0.866 | 0.548 | 2.021 |
HZSM⁃5⁃1%Fe | 112.5 | 173.9 | 412.4 | 1.159 | 0.578 | 2.346 |
HZSM⁃5⁃2%Fe | 112.6 | 176.2 | 407.1 | 1.004 | 0.496 | 2.140 |
Table 2 NH3 desorption temperature and relative acid density of HZSM-5 and Fe/HZSM-5 samples
Sample | Temperature peak/℃ | Weak acidity a /(mmol·g-1) | Strong acidity b /(mmol·g-1) | Total acidity/(mmol·g-1) | ||
---|---|---|---|---|---|---|
Peak A | Peak B | Peak C | ||||
HZSM⁃5 | 111.3 | 176.1 | 427.8 | 0.669 | 0.573 | 1.940 |
HZSM⁃5⁃0.5%Fe | 118.4 | 187.0 | 428.3 | 0.866 | 0.548 | 2.021 |
HZSM⁃5⁃1%Fe | 112.5 | 173.9 | 412.4 | 1.159 | 0.578 | 2.346 |
HZSM⁃5⁃2%Fe | 112.6 | 176.2 | 407.1 | 1.004 | 0.496 | 2.140 |
Sample | xFe3+(tet)(%) | xFe3+(oct)(%) | xFe3+(tet)/xFe3+(oct) | Si NMR | |
---|---|---|---|---|---|
Q3 | Q4 | ||||
HZSM⁃5 | — | — | — | 3.28 | 96.72 |
HZSM⁃5⁃0.5%Fe | 37.8 | 29.1 | 1.29 | 10.92 | 89.08 |
HZSM⁃5⁃1%Fe | 26.5 | 53.5 | 0.49 | 10.81 | 89.19 |
HZSM⁃5⁃2%Fe | 37.6 | 37.1 | 1.01 | 16.82 | 83.18 |
Table 3 Atomic proportions of different iron species and 29Si MAS NMR peak area of HZSM-5 and Fe/HZSM-5 samples
Sample | xFe3+(tet)(%) | xFe3+(oct)(%) | xFe3+(tet)/xFe3+(oct) | Si NMR | |
---|---|---|---|---|---|
Q3 | Q4 | ||||
HZSM⁃5 | — | — | — | 3.28 | 96.72 |
HZSM⁃5⁃0.5%Fe | 37.8 | 29.1 | 1.29 | 10.92 | 89.08 |
HZSM⁃5⁃1%Fe | 26.5 | 53.5 | 0.49 | 10.81 | 89.19 |
HZSM⁃5⁃2%Fe | 37.6 | 37.1 | 1.01 | 16.82 | 83.18 |
1 | Cuong N. D., Hoa N. D., Hoa T. T., Khieu D. Q., Quang D. T., Quang V. V., Hieu N. V., J. Alloys Compd., 2014, 582, 83—87 |
2 | Nair D. S., Kurian M., J. Saudi Chem. Soc., 2019, 23(2), 127—132 |
3 | Yao Y. T., Lyu J. M., Yu S., Liu Z., Li Y., Li X. Y., Su B. L., Chen L. H., Chem. J. Chinese Universities, 2022, 43(8), 20220090 |
姚伊婷, 吕佳敏, 余申, 刘湛, 李昱, 李小云, 苏宝连, 陈丽华. 高等学校化学学报, 2022, 43(8), 20220090 | |
4 | Hentit H., Bachari K., Ouali M. S., Womes M., Benaichouba B., Jumas J. C., J. Mol. Catal. Chem., 2007, 275(1/2), 158—166 |
5 | Chen W. Q., Lyu J. M., Yu S., Liu Z., Li X. Y., Chen L. H., Su B. L., Chem. J. Chinese Universities, 2022, 43(6), 20220086 |
陈玮琴, 吕佳敏, 余申, 刘湛, 李小云, 陈丽华, 苏宝连. 高等学校化学学报, 2022, 43(6), 20220086 | |
6 | Liu B., Liao Z., Xiao X., Gan S., Luo R., Wu Y., Chen H., Fang Y., Dong J., Ind. Eng. Chem. Res., 2020, 59(31), 13932—13939 |
7 | Izumi Y., Ogawa M., Urabe K., Appl. Catal. A: Gen., 1995, 132(1), 127—140 |
8 | Koyande S. N., Jaiswal R. G., Jayaram R. V., Ind. Eng. Chem. Res., 1998, 37(3), 908—913 |
9 | Choudary B. M., Kantam M. L., Sateesh M., Rao K. K., Santhi P. L., Appl. Catal. A: Gen., 1997, 149(1), 257—264 |
10 | Pai S. G., Bajpai A. R., Deshpande A. B., Samant S. D., Synth. Commun., 1997, 27(13), 2267—2273 |
11 | Xu D., Abdelrahman O., Ahn S. H., Guefrachi Y., Kuznetsov A., Ren L., Hwang S., Khaleel M., Al Hassan S., Liu D., Hong S. B., Dauenhauer P., Tsapatsis M., Aiche J., 2019, 65(3), 1067—1075 |
12 | Bachari K., Cherifi O., Catal. Commun., 2006, 7(12), 926—930 |
13 | Huang J., Liu B., Liao Z., Chen H., Yan K., Ind. Eng. Chem. Res., 2019, 58(36), 16636—16644 |
14 | Díaz E., Ordóñez S., Vega A., Auroux A., Coca J., Appl. Catal. A: Gen., 2005, 295(2), 106—115 |
15 | Leng K., Sun S., Wang B., Sun L., Xu W., Sun Y., Catal. Commun., 2012, 28, 64—68 |
16 | Bachari K., Cherifi O., J. Mol. Catal. A: Chem., 2006, 260(1/2), 19—23 |
17 | Bachari K., Millet J. M. M., Benaı̈chouba B., Cherifi O., Figueras F., J. Catal., 2004, 221(1), 55—61 |
18 | Choudhary V. R., Jana S. K., Appl. Catal. A: Gen., 2002, 224(1/2), 51—62 |
19 | Groen J. C., Brückner A., Berrier E., Maldonado L., Moulijn J. A., Pérez⁃Ramírez J., J. Catal., 2006, 243(1), 212—216 |
20 | Bian K., Hou Z. G., Duan X. R., Li X. G., Chang Y., Cao H., Zhang A. F., Guo X. W., Chem. J. Chinese Universities, 2019, 40(4), 784—792 |
边凯, 候章贵, 段欣瑞, 李孝国, 常洋, 曹辉, 张安峰, 郭新闻. 高等学校化学学报, 2019, 40(4), 784—792 | |
21 | Choudhary V. R., Jana S. K., Kiran B. P., Cat. Lett., 1999, 59, 217—219 |
22 | Sun M. H., Zhou J., Hu Z. Y., Chen L. H., Li L. Y., Wang Y. D., Xie Z. K., Turner S., van Tendeloo G., Hasan T., Su B. L., Matter, 2020, 3(4), 1226—1245 |
23 | Chen L. H., Sun M. H., Wang Z., Yang W., Xie Z., Su B. L., Chem. Rev., 2020, 120(20), 11194—11294 |
24 | Saxena S. K., Viswanadham N., Appl. Surf. Sci., 2017, 392, 384—390 |
25 | Wang Y., Sun Y., Lancelot C., Lamonier C., Morin J. C., Revel B., Delevoye L., Rives A., Microporous Mesoporous Mater., 2015, 206, 42—51 |
26 | Liu B., Huang J., Yan J., Luo R., New J. Chem., 2021, 45(19), 8639—8646 |
27 | Xie X. L., Liu Z., Lyu J. M., Yu S., Li X. Y., Su B. L., Chen L. H., Chem. J. Chinese Universities, 2023, 44(10), 20230109 |
谢小兰, 刘湛, 吕佳敏, 余申, 李小云, 苏宝连, 陈丽华. 高等学校化学学报, 2023, 44(10), 20230109 | |
28 | Li J., Xu C., Lou L. L., Zhang C., Yu K., Qi B., Liu S., Wang Y., Catal. Commun., 2013, 38, 59—62 |
29 | Jiang Y., Lin K., Zhang Y., Liu J., Li G., Sun J., Xu X., Appl. Catal. A: Gen., 2012, 445, 172—179 |
30 | Arafat A., Alhamed Y., J. Porous Mater., 2009, 16(5), 565—572 |
31 | Zhou Z., Jiang R., Chen X., Wang X., Hou H., J. Solid State Chem., 2021, 298, 122132 |
32 | Ma L. N., Study on the Synthesis, Characterization and Denitration Performance of Fe⁃ZSM⁃5 Zeolite, Nanjing University of Science and Technology, Nanjing, 2013 |
马罗宁. Fe⁃ZSM⁃5分子筛的合成、 表征及其脱硝性能的研究, 南京: 南京理工大学, 2013 | |
33 | Zhang J., Zhou A., Gawande K., Li G., Shang S., Dai C., Fan W., Han Y., Song C., Ren L., Zhang A., Guo X., ACS Catal., 2023, 13(6), 3794—3805 |
34 | Leng K., Ren Y., Wang W., Wang R., Gao K., Li X., ChemistrySelect, 2022, 7(41), e202201405 |
35 | Du T. Y., Study of Core⁃shell Fe⁃ZSM⁃5 for DeNOx,Nanjing University of Science and Technology, Nanjing, 2016 |
杜天宇. 核壳结构Fe⁃ZSM⁃5的制备及脱硝性能研究, 南京: 南京理工大学, 2016 | |
36 | Yu D., Study on the NOx Removal Performance and Mechanism over Fe⁃ZSM⁃5 Catalysts in the SCR Reaction, Jiangsu University, Zhenjiang, 2022 |
于丹. Fe⁃ZSM⁃5分子筛SCR催化剂NOx脱除性能及机理研究, 镇江: 江苏大学, 2022 | |
37 | Xiao P., Wang Y., Osuga R., Kondo J. N., Yokoi T., Adv. Powder Technol., 2021, 32(4), 1070—1080 |
38 | Yuan M., Deng W., Dong S., Li Q., Zhao B., Su Y., Chem. Eng. J., 2018, 353, 839—848 |
39 | Tan P., J. Catal., 2016, 338, 21—29 |
40 | Jiang X., Su X., Bai X., Li Y., Yang L., Zhang K., Zhang Y., Liu Y., Wu W., Microporous Mesoporous Mater., 2018, 263, 243—250 |
41 | Nai S., Liu X., Liu W., Zhang B., Microporous Mesoporous Mater., 2015, 215, 46—50 |
42 | Yuan B., Li Y., Wang Z., Yu F., Xie C., Yu S., Mol. Catal., 2017, 443, 110—116 |
[1] | CHEN Weiqin, LYU Jiamin, YU Shen, LIU Zhan, LI Xiaoyun, CHEN Lihua, SU Baolian. Preparation of Organic Hybrid Mesoporous Beta Zeolite for Alkylation of Mesitylene with Benzyl Alcohol [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220086. |
[2] | FAN Juanjuan, HAN Yuanyuan, CUI Jie. Monte Carlo Simulation of the Transformation Control of ABC Triblock Copolymer Micelles from Multicompartment Structure to Multicore Structure [J]. Chem. J. Chinese Universities, 2021, 42(3): 857. |
[3] | YU Xia, SONG Chenhai, GUO Xiangke, XUE Nianhua, DING Weiping. Cooperative Catalysis of Adjacent Acid Sites in Zeolite HZSM-5 [J]. Chem. J. Chinese Universities, 2021, 42(1): 239. |
[4] | GUO Shujia, WANG Sen, ZHANG Li, QIN Zhangfeng, WANG Pengfei, DONG Mei, WANG Jianguo, FAN Weibin. Regulating the Acid Sites Distribution in ZSM-5 Zeolite and Its Catalytic Performance in the Conversion of Methanol to Olefins [J]. Chem. J. Chinese Universities, 2021, 42(1): 227. |
[5] | WANG Yuyao, ZHANG Qiang, YU Jihong. Synthesis of Hierarchical NaX Zeolite and Its CO2 Adsorption Performance † [J]. Chem. J. Chinese Universities, 2020, 41(4): 616. |
[6] | BIAN Kai, HOU Zhanggui, DUAN Xinrui, LI Xiaoguo, CHANG Yang, CAO Hui, ZHANG Anfeng, GUO Xinwen. Synthesis and Catalytic Performance of 2D HZSM-5 Nano-sheet for Ethylbenzene Production from Benzene with Dilute Ethylene [J]. Chem. J. Chinese Universities, 2019, 40(4): 784. |
[7] | JI Yuchun,MAO Wenhui,LIAO Hejie,WANG Jilin,LONG Fei,GU Yunle. Boron Nitride Nanotube-nanosheet Hierarchical Structures andIts Optical/adsorption Properties† [J]. Chem. J. Chinese Universities, 2019, 40(2): 216. |
[8] | Siqi SUN,Ying WANG,Chuanyin SUN,Runwei WANG,Zhendong ZHANG,Zongtao ZHANG,Shilun QIU. Preparation and Catalytic Performance of Bowl-shaped Amphiphilic ZSM-5 Zeolites Supported Gold Nanoparticles † [J]. Chem. J. Chinese Universities, 2019, 40(12): 2436. |
[9] | CUI Yan, ZHANG Kai, CHEN Yixin, SUN Hongchen, HUANG Yang, WANG Dandan. In situ Biomimetic Remineralization of Enamel-like Hierarchical Structures† [J]. Chem. J. Chinese Universities, 2018, 39(6): 1121. |
[10] | KONG Xuelin, LU Yun, YE Guichao, LI Daohao, SUN Jin, YANG Dongjiang, YIN Yafang. Nanofibrillated Cellulose Derived Hierarchical Porous Carbon Aerogels: Efficient Anode Material for Lithium Ion Battery† [J]. Chem. J. Chinese Universities, 2017, 38(11): 1941. |
[11] | SHI Gang, BAI Huiyu, WANG Likui, SANG Xinxin, YANG Jingguo, NI Caihua, LI Ying. Fabrication of Hierarchical Hemisphere Ag Substrate Using Transfer Imprinting with No Pressure Under Ambient Temperature† [J]. Chem. J. Chinese Universities, 2017, 38(10): 1719. |
[12] | ZHANG Fan, WANG Bin, WANG Jiaona, LI Xiuyan, LI Congju. Preparation of Hierarchically Structured AOPAN@Mg(OH)2 Composite Nanofibrous Membrane and Cr(Ⅵ)-removal Capacity† [J]. Chem. J. Chinese Universities, 2016, 37(11): 2117. |
[13] | ZHANG Xiao, XIE Yingjuan, MA Peijun, WU Zhijiao, ZHAO Suling, PIAO Lingyu. Photocatalytic Performances for Mixed-phase Hierarchical Structure TiO2 Prepared by Physical Mixing† [J]. Chem. J. Chinese Universities, 2015, 36(10): 1977. |
[14] | HUANG Jianye, WANG Fenghui, HOU Shaohang, ZHAO Xiang. Fabrication of Superhydrophobic Surfaces with Hierarchical Structures by an Ultrasonic Etch Method† [J]. Chem. J. Chinese Universities, 2014, 35(9): 1968. |
[15] | SHEN Junhai, LI Jiajia, LI Liangchao, LI Juanbi, DING Yan. Fabrication and Morphological Control of Hierarchical-structure ZnO† [J]. Chem. J. Chinese Universities, 2014, 35(6): 1135. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||