Chem. J. Chinese Universities ›› 2019, Vol. 40 ›› Issue (4): 784.doi: 10.7503/cjcu20180670
• Physical Chemistry • Previous Articles Next Articles
BIAN Kai1, HOU Zhanggui2, DUAN Xinrui1, LI Xiaoguo2, CHANG Yang2, CAO Hui2, ZHANG Anfeng1,*(), GUO Xinwen1,*()
Received:
2018-10-03
Online:
2019-04-10
Published:
2019-01-09
Contact:
ZHANG Anfeng,GUO Xinwen
E-mail:zhangaf@dlut.edu.cn;Guoxw@dlut.edu.cn
CLC Number:
TrendMD:
BIAN Kai, HOU Zhanggui, DUAN Xinrui, LI Xiaoguo, CHANG Yang, CAO Hui, ZHANG Anfeng, GUO Xinwen. Synthesis and Catalytic Performance of 2D HZSM-5 Nano-sheet for Ethylbenzene Production from Benzene with Dilute Ethylene[J]. Chem. J. Chinese Universities, 2019, 40(4): 784.
Fig.3 Catalytic performance of HZSM-5 zeolites with different Si/Al atom ratiosReaction conditions: T=633 K, p=1.4 MPa, n(C6H6)/n(C2H4)=6, WHSV(C2H4)=1.5 h-1, φ(C2H4)=15%. (A) Z5-80; (B) Z5-120; (C) Z5-160; (D) Z5-200.
Catalyst | C6H6 conversion(%) | Product selectivity(%) | EB+DEB yield(%) | ||||
---|---|---|---|---|---|---|---|
Toluene | EB+DEB | Xylene | C9 | ||||
Z5-80 | 13.1 | 0.11 | 99.1 | 0.09 | 0.61 | 0.08 | 12.98 |
Z5-120 | 12.5 | 0.09 | 99.0 | 0.07 | 0.81 | 0.09 | 12.38 |
Z5-160 | 12.8 | 0.05 | 99.4 | 0.05 | 0.47 | 0.05 | 12.72 |
Z5-200 | 12.4 | 0.05 | 99.2 | 0.05 | 0.58 | 0.07 | 12.30 |
Table 1 Catalytic performance of HZSM-5 zeolites with different Si/Al atom ratios
Catalyst | C6H6 conversion(%) | Product selectivity(%) | EB+DEB yield(%) | ||||
---|---|---|---|---|---|---|---|
Toluene | EB+DEB | Xylene | C9 | ||||
Z5-80 | 13.1 | 0.11 | 99.1 | 0.09 | 0.61 | 0.08 | 12.98 |
Z5-120 | 12.5 | 0.09 | 99.0 | 0.07 | 0.81 | 0.09 | 12.38 |
Z5-160 | 12.8 | 0.05 | 99.4 | 0.05 | 0.47 | 0.05 | 12.72 |
Z5-200 | 12.4 | 0.05 | 99.2 | 0.05 | 0.58 | 0.07 | 12.30 |
Fig.5 Catalytic performance of HZSM-5 zeolites with different b-axis thicknessesReaction conditions: T=633 K, p=1.4 MPa, n(C6H6)/n(C2H4)=1, WHSV(C2H4)=1.5 h-1, φ(C2H4)=15%. (A) Z5-160-0; (B) Z5-160-0.01%; (C) Z5-160; (D) Z5-160-3%.
Catalyst | C6H6 conversion (%) | Product selectivity(%) | EB+DEB yield(%) | Coking rate (%·h-1) | ||||
---|---|---|---|---|---|---|---|---|
Toluene | EB+DEB | Xylene | C9 | |||||
Z5-160-0 | 34.6 | 0.94 | 88.1 | 0.37 | 9.19 | 1.38 | 30.48 | 0.11 |
Z5-160-0.01% | 41.2 | 0.45 | 93.5 | 0.25 | 4.94 | 0.89 | 38.44 | 0.05 |
Z5-160 | 44.0 | 0.45 | 94.8 | 0.22 | 3.69 | 0.81 | 41.71 | 0.05 |
Z5-160-3% | 43.1 | 0.44 | 94.1 | 0.23 | 4.27 | 0.95 | 40.56 | 0.03 |
Table 2 Catalytic performance of HZSM-5 zeolites with different b-axis thicknesses
Catalyst | C6H6 conversion (%) | Product selectivity(%) | EB+DEB yield(%) | Coking rate (%·h-1) | ||||
---|---|---|---|---|---|---|---|---|
Toluene | EB+DEB | Xylene | C9 | |||||
Z5-160-0 | 34.6 | 0.94 | 88.1 | 0.37 | 9.19 | 1.38 | 30.48 | 0.11 |
Z5-160-0.01% | 41.2 | 0.45 | 93.5 | 0.25 | 4.94 | 0.89 | 38.44 | 0.05 |
Z5-160 | 44.0 | 0.45 | 94.8 | 0.22 | 3.69 | 0.81 | 41.71 | 0.05 |
Z5-160-3% | 43.1 | 0.44 | 94.1 | 0.23 | 4.27 | 0.95 | 40.56 | 0.03 |
Sample | (m2·g-1) | (cm3·g-1) | (cm3·g-1) | Si/Al atom ratiod | Weak aciditye/ (μmol·g-1) | Strong aciditye/ (μmol·g-1) | Total aciditye/ (μmol·g-1) | Relative crystallinity(%) |
---|---|---|---|---|---|---|---|---|
Z5-160 | 505 | 0.18 | 0.65 | 137 | 37 | 39 | 76 | 100 |
Z5-NaOH-AT | 367 | 0.14 | 0.74 | 69 | 37 | 56 | 93 | 51 |
Z5-NaOH-TPAOH-AT | 447 | 0.16 | 0.97 | 69 | 43 | 55 | 98 | 56 |
Z5-TPAOH-AT | 429 | 0.16 | 0.50 | 56 | 40 | 55 | 95 | 79 |
Table 3 Surface areas, pore volumes and acid densities of HZSM-5 nano-sheet with different alkaline treatments
Sample | (m2·g-1) | (cm3·g-1) | (cm3·g-1) | Si/Al atom ratiod | Weak aciditye/ (μmol·g-1) | Strong aciditye/ (μmol·g-1) | Total aciditye/ (μmol·g-1) | Relative crystallinity(%) |
---|---|---|---|---|---|---|---|---|
Z5-160 | 505 | 0.18 | 0.65 | 137 | 37 | 39 | 76 | 100 |
Z5-NaOH-AT | 367 | 0.14 | 0.74 | 69 | 37 | 56 | 93 | 51 |
Z5-NaOH-TPAOH-AT | 447 | 0.16 | 0.97 | 69 | 43 | 55 | 98 | 56 |
Z5-TPAOH-AT | 429 | 0.16 | 0.50 | 56 | 40 | 55 | 95 | 79 |
Fig.8 Catalytic performance of HZSM-5 zeolites with different alkaline treatmentsReaction condition: T=633 K, p=1.4 MPa, n(C6H6)/n(C2H4)=1, WHSV(C2H4)=1.5 h-1, φ(C2H4)=15%. (A) Z5-160; (B) Z5-NaOH-AT; (C) Z5-NaOH-TPAOH-AT; (D) Z5-TPAOH-AT.
Catalyst | C6H6 conversion(%) | Product selectivity(%) | EB+DEB yield(%) | Coking rate/ (%·h-1) | ||||
---|---|---|---|---|---|---|---|---|
Toluene | EB+DEB | Xylene | C9 | |||||
Z5-160 | 44.0 | 0.45 | 94.8 | 0.22 | 3.69 | 0.81 | 41.71 | 0.05 |
Z5-NaOH-AT | 40.6 | 0.52 | 91.9 | 0.25 | 5.90 | 1.43 | 37.31 | 0.04 |
Z5-NaOH-TPAOH-AT | 41.1 | 0.36 | 93.4 | 0.20 | 4.76 | 1.24 | 38.67 | 0.05 |
Z5-TPAOH-AT | 44.0 | 0.51 | 93.6 | 0.24 | 4.60 | 1.06 | 41.18 | 0.03 |
Table 4 Catalytic performance of HZSM-5 zeolites with different alkaline treatments
Catalyst | C6H6 conversion(%) | Product selectivity(%) | EB+DEB yield(%) | Coking rate/ (%·h-1) | ||||
---|---|---|---|---|---|---|---|---|
Toluene | EB+DEB | Xylene | C9 | |||||
Z5-160 | 44.0 | 0.45 | 94.8 | 0.22 | 3.69 | 0.81 | 41.71 | 0.05 |
Z5-NaOH-AT | 40.6 | 0.52 | 91.9 | 0.25 | 5.90 | 1.43 | 37.31 | 0.04 |
Z5-NaOH-TPAOH-AT | 41.1 | 0.36 | 93.4 | 0.20 | 4.76 | 1.24 | 38.67 | 0.05 |
Z5-TPAOH-AT | 44.0 | 0.51 | 93.6 | 0.24 | 4.60 | 1.06 | 41.18 | 0.03 |
[1] | Sun L. P., Guo X. W., Liu M., Wang X. S., Appl. Catal.A,2009, 355, 184—191 |
[2] | Sun L. P., Guo X. W., Xiong G., Wang X. S., Catal.Commun., 2012, 25, 18—21 |
[3] | Degnan Jr. F. T., Smith C. M., Venkat C. R., Appl. Catal.A,2001, 221, 283—294 |
[4] | Sun L. P., Liu C., Qiao Q., Guo X. W., J. Taiwan. Inst. Chem. E,2016, 64, 9—15 |
[5] | Ding S.S., Petrochem. Tech., 1986, 21—24 |
(丁叔圣.石油化工, 1986, 21—24) | |
[6] | Yang W. M., Wang Z. D., Sun H. M., Zhang B., Chin. J.Catal., 2016, 37, 16—26 |
(杨为民, 王振东, 孙洪敏, 张斌. 催化学报,2016, 37(1), 16—26) | |
[7] | Groen J.C., Moulijn J. A., Pérez-Ramírez J., J. Mater. Chem., 2006, 16,2121—2131 |
[8] | Corma A., Chem.Rev., 1995, 95, 559—614 |
[9] | Corma A., Chem.Rev., 1997, 97, 2373—2420 |
[10] | Smit B., Maesen T. L. M., Chem.Rev.,2008, 108, 4125—4184 |
[11] | Janda A., Bell A. T., J. Am. Chem.Soc.,2013, 135, 19193—19207 |
[12] | Kida T., Kojima K., Ohnishi H., Guan G., Yoshida A., Ceram.Int., 2004, 30, 727—732 |
[13] | Wang Q. X., Cai G. Y., Huang Z. X., Liu Y. S., Zhang S. R., Wei Y. Z., Li F., Chin. J.Catal.,1990, V11, 236—241 |
(王清遐, 蔡光宇, 黄祖贤, 刘玉生, 张淑蓉, 魏永祯, 李峰. 催化学报, 1990, V11, 236—241) | |
[14] | Ma Y. H., Cai D. L., Li Y. R., Wang N., Muhammad U., Carlsson A., Tang D., Qian W. Z., Wang Y., Su D. S., Wei F., RSC Adv., 2016, 6, 74797—74801 |
[15] | Boltz M., Losch P., Louis B., Rioland G., Tzanis L., Daou T. J., RSC Adv., 2014, 4, 27242—27249 |
[16] | Liu Y., Zhou X., Pang X., Jin Y., Meng X. J., Zheng X., Gao X., Xiao F. S., Chem.Cat.Chem.,2013, 5, 1517—1523 |
[17] | Verboekend D., Thomas K., Milina M., Mitchell S., Pérez-Ramírez J., Gilson J. P., Catal. Sci.Tech., 2011, 1, 1331 |
[18] | Choi M., Na K., Kim J., Sakamoto Y., Terasaki O., Ryoo R., Nature,2009, 461, 246—249 |
[19] | Zhang L., Song Y., Li G., Zhang Q., Zhang S., Xu J., Deng F., Gong Y., RSC Adv., 2015, 5, 61354—61363 |
[20] | Valtchev V., Majano G., Mintova S., Pérez-Ramírez J., Chem. Soc.Rev., 2013, 42, 263—290 |
[21] | Moller K., Bein T., Chem. Soc.Rev., 2013, 42, 3689—3707 |
[22] | Groen J. C., Moulijn J. A., Pérez-Ramírez J., Micropor. Mesopor.Mat., 2005, 87, 153—161 |
[23] | Lopez-Orozco S., Inayat A., Schwab A., Selvam T., Schwieger W., Adv.Mater., 2011, 23, 2602—2615 |
[24] | Zhang H., Zhao Y., Zhang H., Wang P., Shi Z., Mao J., Zhang Y., Tang Y., Chemistry,2016, 22, 7141—7151 |
[25] | Groen J. C., Maldonado L., Berrier E., Brückner A., Moulijn J. A., Pérez-Ramírez J., J. Phys. Chem.B,2006, 110, 20369—20378 |
[26] | Groen J. C., Zhu W., Brouwer S., Huynink S. J., Kapteijn F., Moulijn J. A., Pérez-Ramírez J., J. Am. Chem.Soc.,2007, 129, 355—360 |
[27] | Zhou J., Teng J., Ren L., Wang Y., Liu Z., Liu W., Yang W., Xie Z. K., J.Catal.,2016, 340, 166—176 |
[28] | Yang W.M.,Sun H. M.,Shanghai Chemical Industry, 2002, 16—18 |
(杨为民, 孙洪敏. 上海化工, 2002, 16—18) | |
[29] | Zhang W. P., Bao X. H., Guo X. W., Wang X. S., Catal.Lett., 1999, 60, 89—94 |
[30] | Abelló S., Bonilla A., Pérez-Ramírez J., Appl. Catal.A,2009, 364, 191—198 |
[1] | JIN Shaoqing, SUN Hongmin, YANG Weimin. Applications of Zeolite Catalysts in Chemical Industry [J]. Chem. J. Chinese Universities, 2021, 42(1): 217. |
[2] | YU Xia, SONG Chenhai, GUO Xiangke, XUE Nianhua, DING Weiping. Cooperative Catalysis of Adjacent Acid Sites in Zeolite HZSM-5 [J]. Chem. J. Chinese Universities, 2021, 42(1): 239. |
[3] | JING Run,LU Xinhuan,ZHANG Haifu,TAO Peipei,PAN Haijun,HU Ao,ZHOU Dan,XIA Qinghua. Highly Efficient MIL-101(Fe) Catalyst for the Preparation of Nopol by the Prins Condensation of β-Pinene and Formaldehyde† [J]. Chem. J. Chinese Universities, 2019, 40(4): 755. |
[4] | LI Xiaoci, XI Zhiwen, LIU Xing, LI Ming, HAO Zhixian, ZHU Zhirong. Effect of Additives TiO2 on Catalyst Performance for Dehydrogenation of Ethylbenzene to Styrene† [J]. Chem. J. Chinese Universities, 2017, 38(7): 1229. |
[5] | XIA Yanyang, BU Tiantong, WANG Licheng, ZHU Wanchun, YANG Xuwei, BAO Qiang, HAO Mengmeng, CHENG Dongdong, WANG Zhenlü. Hydrodealkylation of Trimethylbenzene over Silicon-based Catalyst† [J]. Chem. J. Chinese Universities, 2016, 37(12): 2215. |
[6] | LI Yingli, NING Hongbo, ZHU Quan, LI Xiangyuan. Kinetics Simulation of Ethylbenzene Pyrolysis Under Supercritical Pressure† [J]. Chem. J. Chinese Universities, 2014, 35(3): 576. |
[7] | JIN Feng-Ying, GUO Xin-Wen, WANG Xiang-Sheng*. Influence of Ethylenediamine Tetraacetic Acid on the Hydrodesulfurization Activity of Nano HZSM-5 Supported NiMo Catalyst [J]. Chem. J. Chinese Universities, 2011, 32(1): 113. |
[8] | TAO Ling, HUANG Ming-Qiang, HAO Li-Qing, ZHANG Wei-Jun*, WANG Zheng-Ya, KONG Rui-Hong, SHAN Xiao-Bin, LIU Fu-Yi, SHENG Liu-Si. Experimental Studies on Photoionization of Ethylbenzene [J]. Chem. J. Chinese Universities, 2010, 31(10): 2063. |
[9] | ZHANG Pei-Qing 1* , GUO Hong-Chen2, WANG Xiang-Sheng2, GUO Xin-Wen2. Conversion of n-Octane over Modified Nano-crystallite ZSM-5 Catalyst [J]. Chem. J. Chinese Universities, 2006, 27(5): 929. |
[10] | ZHANG Pei-Qing1, GUO Hong-Chen2, ZHU Hong-Jie1, WANG Xiang-Sheng2, JIANG Xue-Mei1, WANG Ping1. Conversion of Hydrocarbons over Nano-HZSM-5 Catalysts [J]. Chem. J. Chinese Universities, 2006, 27(12): 2366. |
[11] | HAN Xiao-Xiang, JIANG Heng, GONG Hong, QIAO Qing-Dong . A Remarkable Synergic Effect of Metal Phthalocyanine and High Valence Metal Salt or Oxide in the Selective Oxidation of Ethylbenzene [J]. Chem. J. Chinese Universities, 1999, 20(8): 1295. |
[12] | ZHANG Chun-Lei, WU Zhi-Yun, KAN Qiu-Bin . Studies on Catalysis of Ferrosilicates for OxidationDehydrogenation of Ethylbenzene ──Effect of Exchanged Cations and Hydrothermal Treatment on Actlvity [J]. Chem. J. Chinese Universities, 1995, 16(3): 449. |
[13] | ZHANG Hui-Liang, SHANG-GUAN Rong-Chang, GE Xin, ZHANG Qi. Studies of the Nature of the Surface Oxygen Species and the Catalytic Activities of V2O5 and V2O5 with the Additive Ag or Ag,Ni [J]. Chem. J. Chinese Universities, 1994, 15(4): 592. |
[14] | WEN Ling-Sheng, LIU Ya-Juan, ZHANG Wu-Yang, XU Zheng, CUI Sheng-Fan, DING Yi, WANG Shi-Li. Activity Phase of Solid Phosphoric Acid Catalysts [J]. Chem. J. Chinese Universities, 1994, 15(3): 428. |
[15] | PAN Lu-Rang, LI He-Xuan . Studies on Internal and External Surface Acid Pore Size and Shape-Selective Properties of HZSM-5 Zeolite [J]. Chem. J. Chinese Universities, 1993, 14(9): 1284. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||