 
	 
	Chem. J. Chinese Universities ›› 2020, Vol. 41 ›› Issue (1): 132.doi: 10.7503/cjcu20190463
• Physical Chemistry • Previous Articles Next Articles
					
													ZHAO Yanfeng,SUN Xiaolong,HU Shaozheng( ),WANG Hui,WANG Fei,LI Ping
),WANG Hui,WANG Fei,LI Ping
												  
						
						
						
					
				
Received:2019-08-23
															
							
															
							
															
							
																											Online:2020-01-10
																								
							
																	Published:2019-11-21
															
						Contact:
								Shaozheng HU   
																	E-mail:hushaozhenglnpu@163.com
																					Supported by:CLC Number:
TrendMD:
ZHAO Yanfeng,SUN Xiaolong,HU Shaozheng,WANG Hui,WANG Fei,LI Ping. Effect of Oxygen on Photocatalytic Nitrogen Fixation Performance of N Vacancy-embedded Graphitic Carbon Nitride †[J]. Chem. J. Chinese Universities, 2020, 41(1): 132.
 
																													Fig.1 N2 photofixation ability over as-prepared catalysts(A), NH4+ production ability of OCN(VN) in aprotic solvent DMF or using AgNO3 as the electron scavenger(B), N2 photofixation ability of reused OCN(VN)(C) and comparison of NH4+ production rate over OCN(VN) and other catalysts(D)
 
																													Fig.3 XRD patterns(A), UV-Vis spectra(B), plots of transformed Kubelka-Munk function vs. the energy of light(C) and N2 adsorption-desorption isotherms(D) of as-prepared catalysts
 
																													Fig.8 EIS(A) and PL(B) spectra of NCN, CN(VN), OCN and OCN(VN) and comparison of their PL intensity under Ar and N2 atmospheres(C) and the possible electrons transfer route(inset)(C)
| [1] | Fujishima A., Rao T. N ., Tryk D. A., J. Photochem. Photobiol. C: Photochem. Rev., 2000,1(1), 1— 21 doi: 10.1016/S1389-5567(00)00002-2 URL | 
| [2] | Kamat P. V .,  Chem. Rev., 1993,93(1), 267— 300 doi: 10.1021/cr00017a013 URL | 
| [3] | Hoffmann M. R ., Martin S. T.,Choi W.,Bahnemann D. W., Chem. Rev., 1995,95(1), 69— 96 doi: 10.1021/cr00033a004 URL | 
| [4] | Li X. B ., Xiong J.,Huang J. T.,Feng Z. J.,Luo J. M.,  J. Alloy. Compd., 2019,774, 768— 778 doi: 10.1016/j.jallcom.2018.10.034 URL | 
| [5] | Li X. B ., Xiong J.,Xu Y.,Feng Z. J.,Huang J. T.,  Chinese J. Catal., 2019,40, 424— 433 doi: 10.1016/S1872-2067(18)63183-3 URL | 
| [6] | Tian H. W ., Liu M.,Zhen W. T.,  Appl. Catal. B: Environ., 2018,225, 468— 476 doi: 10.1016/j.apcatb.2017.12.019 URL | 
| [7] | Tian H. W ., Shen K.,Hu X. Y.,Qiao L.,Zheng W. T., J. Alloy. Compd., 2017,691, 369— 377 doi: 10.1016/j.jallcom.2016.08.261 URL | 
| [8] | Shen K., Xue X., Wang X. Y ., Hu X. Y.,Tian H. W.,Zheng W. T., RSC Adv., 2017,7(38), 23319— 23327 doi: 10.1039/C7RA01856H URL | 
| [9] | Luo W. J ., Chen X. J.,Wei Z.,Liu D.,Yao W. Q.,Zhu Y. F.,  Appl. Catal. B: Environ., 2019,255, 117761 doi: 10.1016/j.apcatb.2019.117761 URL | 
| [10] | Hu S. Z., Qu X. Y.,Li P.,Wang F.,Li Q.,Song L. J.,Zhao Y. F.,Kang X. X.,  Chem. Eng. J., 2018,334, 410— 418 doi: 10.1016/j.cej.2017.10.016 URL | 
| [11] | Guo S. E ., Deng Z. P.,Li M. X.,Jiang B. J.,Tian C. G.,Pan Q. J.,Fu H. G.,  Angew. Chem. Int. Ed., 2016,55(5), 1830— 1834 doi: 10.1002/anie.201508505 URL pmid: 26692105 | 
| [12] | Li G. L ., Guo C. S.,Yan M.,Liu S. Q., Appl. Catal B: Environ., 2016,183, 142— 148 doi: 10.1016/j.apcatb.2015.10.039 URL | 
| [13] | Ansari M. B ., Jin H. L.,Parvin M. N.,Park S. E., Catal. Today, 2012,185(1), 211— 216 doi: 10.1016/j.cattod.2011.07.024 URL | 
| [14] | Chen K., Zhang X. M ., Yang X. F.,Jiao M. G.,Zhou Z.,Zhang M. H.,Wang D. H.,Bu X. H.,  Appl. Catal B: Environ., 2018,238, 263— 273 doi: 10.1016/j.apcatb.2018.07.037 URL | 
| [15] | Schrauzer G. N ., Guth T. D., J. Am. Chem. Soc., 1977,99(22), 7189— 7193 doi: 10.1021/ja00464a015 URL | 
| [16] | Wang X. C ., Maeda K.,Chen X. F.,Takanabe K.,Domen K.,Hou Y. D.,Fu X. Z.,Antonietti M., J. Am. Chem. Soc. , 2009,131(5), 1680— 1681 doi: 10.1021/ja809307s URL pmid: 19191697 | 
| [17] | Li Q., Yang J., Feng D., Wu Z., Wu Q., Park S. S ., Ha C. S.,Zhao D., Nano Res., 2010,3(9), 632— 642 doi: 10.1007/s12274-010-0023-7 URL | 
| [18] | Park S. S ., Chu S. W.,Xue C.,Zhao D.,Ha C. S., J. Mater. Chem., 2011,21, 10801— 10807 doi: 10.1039/c1jm10849b URL | 
| [19] | Zheng Y., Liu J., Liang J., Jaroniec M., Qiao S.,  Energy Environ. Sci., 2012,5, 6717— 6731 doi: 10.1039/c2ee03479d URL | 
| [20] | Zheng Y., Jiao Y., Chen J., Liu J., Liang J., Du A., Zhang W., Zhu Z., Smith S. C ., Jaroniec M.,Lu G.,Qiao S., J. Am. Chem. Soc., 2011,133(50), 20116— 20119 doi: 10.1021/ja209206c URL | 
| [21] | Xiong T., Cen W. L ., Zhang Y. X.,Dong F., ACS Catal., 2016,6(4), 2462— 2472 doi: 10.1021/acscatal.5b02922 URL | 
| [22] | Dong F., Zhao Z. W ., Sun Y. J.,Zhang Y. X.,Yan S.,Wu Z. B., Environ. Sci. Tech., 2015,49(20), 12432— 12440 doi: 10.1021/acs.est.5b03758 URL pmid: 26375261 | 
| [23] | Cao S. H ., Chen H.,Jiang F.,Wang X.,  Appl. Catal. B: Environ., 2018,224, 222— 229 doi: 10.1016/j.apcatb.2017.10.028 URL | 
| [24] | Hu S. Z ., Qu X. Y.,Bai J.,Li P.,Li Q.,Wang F.,Song L. J., ACS Sus. Chem. Eng., 2017,5(8), 6863— 6872 | 
| [25] | Li X. M ., Sun X.,Zhang L.,Sun S. M.,Wang W. Z.,  J. Mater. Chem. A, 2018,6, 3005— 3011 doi: 10.1039/C7TA09762J URL | 
| [26] | Dong G. H ., Ho W. K.,Wang C. Y.,  J. Mater. Chem. A, 2015,3, 23435— 23441 doi: 10.1039/C5TA06540B URL | 
| [27] | Ma H. Q ., Shi Z. Y.,Li S.,Liu N., Appl. Surf. Sci., 2016,379, 309— 315 doi: 10.1016/j.apsusc.2016.04.085 URL | 
| [28] | Hu S. Z ., Chen X.,Li Q.,Zhao Y. F.,Mao W., Catal. Sci. Technol., 2016,6, 5884— 5890 doi: 10.1039/C6CY00622A URL | 
| [29] | Li H., Shang J., Ai Z. H ., Zhang L. Z., J. Am. Chem. Soc., 2015,137(19), 6393— 6399 doi: 10.1021/jacs.5b03105 URL pmid: 25874655 | 
| [30] | Li J. H ., Shen B.,Hong Z. H.,Lin B. Z.,Gao B. F.,Chen Y. L.,  Chem. Commun., 2012,48, 12017— 12019 doi: 10.1039/c2cc35862j URL pmid: 23133831 | 
| [31] | Qu X. Y ., Hu S. Z.,Bai J.,Li P.,Lu G.,Kang X. X.,  New J. Chem., 2018,42, 4998— 5004 doi: 10.1039/C7NJ04760F URL | 
| [32] | Zhao W. R ., Zhang J.,Zhu X.,Zhang M.,Tang J.,Tan M.,Wang Y., Appl. Catal. B: Environ., 2014,144, 468— 477 doi: 10.1016/j.apcatb.2013.07.047 URL | 
| [33] | Rusina O., Linnik O., Eremenko A., Kisch H., ., Chem. Eur. J 2003,9(2), 561— 565 doi: 10.1002/chem.200390059 URL pmid: 12532306 | 
| [34] | Hu S. Z ., Chen X.,Li Q.,Li F. Y.,Fan Z. P.,Wang H.,Wang Y. J.,Zheng B. H.,Wu G., Appl. Catal. B: Environ., 2017,201, 58— 69 doi: 10.1016/j.apcatb.2016.08.002 URL | 
| [35] | Ding J., Xu W., Wan H., Yuan D., Chen C., Wang L., Guan G., Dai W. L .,   Appl. Catal. B: Environ., 2018,221, 626— 634 doi: 10.1016/j.apcatb.2017.09.048 URL | 
| [36] | Kim Y. I ., Atherton S. J.,Brigham E. S.,Mallouk T. E., J. Phys. Chem., 1993,97(45), 11802— 11810 doi: 10.1021/j100147a038 URL | 
| [37] | Yuan B., Chu Z. Y ., Li G. Y.,Jiang Z. H.,Hu T. J.,Wang Q. H.,Wang C. H., J. Mater. Chem. C, 2014,2, 8212— 8215 doi: 10.1039/C4TC01421A URL | 
| [38] | Wang K. Y., Gu G. Z.,Hu S. Z.,Zhang J.,Sun X. L.,Wang F.,Li P.,Zhao Y. F.,Fan Z. P.,Zou X.,  Chem. Eng. J., 2019,368, 896— 904 doi: 10.1016/j.cej.2019.03.037 URL | 
| [39] | Li C., Yu S., Dong H., Wang Y., Wu H., Zhang X., Chen G., Liu C ., J. Colloid Interf. Sci., 2018,531, 331— 342 doi: 10.1016/j.jcis.2018.07.083 URL pmid: 30048886 | 
| [40] | Zhang Y. W ., Liu J. H.,Wu G.,Chen W.,. Nanoscale, 2012,4, 5300— 5303 doi: 10.1039/c2nr30948c URL | 
| [41] | Fu J., Zhu B., Jiang C., Cheng B., You W., Yu J ., Small, 2017,13(15), 1603938 doi: 10.1002/smll.v13.15 URL | 
| [42] | Qiu P., Xu C., Chen H., Jiang F., Wang X., Lu R., Zhang X.,  Appl. Catal. B: Environ.., 2017,206, 319— 327 doi: 10.1016/j.apcatb.2017.01.058 URL | 
| [43] | Hoshino K., ., Chem. Eur. J 2001,7(13), 2727— 2731 doi: 10.1002/1521-3765(20010702)7:13<2727::aid-chem2727>3.0.co;2-4 URL pmid: 11486946 | 
| [44] | Lei W., Portehault D., Dimova R., Antoniettit M ., J. Am. Chem. Soc., 2011,133(18), 7121— 7127 doi: 10.1021/ja200838c URL | 
| [45] | Qu X. Y ., Hu S. Z.,Bai J.,Li P.,Lu G.,Kang X. X.,  New J. Chem., 2018,42, 4998— 5004 doi: 10.1039/C7NJ04760F URL | 
| [46] | Li S. J ., Chen X.,Hu S. Z.,Li Q.,Bai J.,Wang F.,  RSC Adv., 2016,6, 45931— 45937 doi: 10.1039/C6RA08817A URL | 
| [1] | TENG Zhenyuan, ZHANG Qitao, SU Chenliang. Charge Separation and Surface Reaction Mechanisms for Polymeric Single-atom Photocatalysts [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220325. | 
| [2] | QIN Yongji, LUO Jun. Applications of Single-atom Catalysts in CO2 Conversion [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220300. | 
| [3] | LIN Zhi, PENG Zhiming, HE Weiqing, SHEN Shaohua. Single-atom and Cluster Photocatalysis: Competition and Cooperation [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220312. | 
| [4] | ZHAO Yingzhe, ZHANG Jianling. Applications of Metal-organic Framework-based Material in Carbon Dioxide Photocatalytic Conversion [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220223. | 
| [5] | XIA Wu, REN Yingyi, LIU Jing, WANG Feng. Chitosan Encapsulated CdSe QDs Assemblies for Visible Light-induced CO2 Reduction in an Aqueous Solution [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220192. | 
| [6] | QIU Liqi, YAO Xiangyang, HE Liangnian. Visible-light-driven Selective Reduction of Carbon Dioxide Catalyzed by Earth-abundant Metalloporphyrin Complexes [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220064. | 
| [7] | WANG Guangqi, BI Yiyang, WANG Jiabo, SHI Hongfei, LIU Qun, ZHANG Yu. Heterostructure Construction of Noble-metal-free Ternary Composite Ni(PO3)2-Ni2P/CdS NPs and Its Visible Light Efficient Catalytic Hydrogen Production [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220050. | 
| [8] | TAO Yu, OU Honghui, LEI Yongpeng, XIONG Yu. Research Progress of Single-atom Catalysts in Photocatalytic Reduction of Carbon Dioxide [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220143. | 
| [9] | SUN Xuefeng, RENAGUL Abdurahman, YANG Tongsheng, YANG Qianting. Synthesis and Luminescence Properties of Cr,In Co-doped Small Size MgGa2O4 Near-infrared Persistent Luminescence Nanoparticles [J]. Chem. J. Chinese Universities, 2022, 43(4): 20210850. | 
| [10] | FENG Li, SHAO Lanxing, LI Sijun, QUAN Wenxuan, ZHUANG Jinliang. Synthesis of Ultrathin Sm-MOF Nanosheets and Their Visible-light Induced Photodegradation of Mustard Simulant [J]. Chem. J. Chinese Universities, 2022, 43(4): 20210867. | 
| [11] | MENG Xiangyu, ZHAN Qi, WU Yanan, MA Xiaoshuang, JIANG Jingyi, SUN Yueming, DAI Yunqian. Photothermal Enhanced Photocatalytic Hydrogenation Performance of Au/RGO/Na2Ti3O7 [J]. Chem. J. Chinese Universities, 2022, 43(3): 20210655. | 
| [12] | GUO Biao, ZHAO Chencan, LIU Xinxin, YU Zhou, ZHOU Lijing, YUAN Hongming, ZHAO Zhen. Effects of Surface Hydrothermal Carbon Layer on the Photocatalytic Activity of Magnetic NiFe2O4 Octahedron [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220472. | 
| [13] | LI Chenchen, NA Yong. g-C3N4/CdS/Ni Composite as a Bifunctional Photocatalyst for H2 Generation and 5-Hydroxymethylfurfural Oxidation [J]. Chem. J. Chinese Universities, 2021, 42(9): 2896. | 
| [14] | LI Yishan, GUO Liang, PENG Sifan, ZHANG Qingmao, ZHANG Yuhao, XU Shiqi. Cobalt Substitutions in Lanthanum Manganate Photocatalyst: First-principles and Visible-light Photocatalytic Ability Investigation [J]. Chem. J. Chinese Universities, 2021, 42(6): 1881. | 
| [15] | WANG Peng, YANG Min, TANG Sengpei, CHEN Feitai, LI Youji. Preparation of Cellular C3N4/CoSe2/GA Composite Photocatalyst and Its CO2 Reduction Activity [J]. Chem. J. Chinese Universities, 2021, 42(6): 1924. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||