Chem. J. Chinese Universities ›› 2019, Vol. 40 ›› Issue (7): 1472.doi: 10.7503/cjcu20190043
• Physical Chemistry • Previous Articles Next Articles
LIU Shasha1,2, WANG Lin1, YUAN Shiling2, CAO Xiaorong1,*(
)
Received:2019-01-15
Online:2019-07-10
Published:2019-07-12
Contact:
CAO Xiaorong
E-mail:cxr_1974@126.com
Supported by:CLC Number:
TrendMD:
LIU Shasha, WANG Lin, YUAN Shiling, CAO Xiaorong. Molecular Dynamics Simulation of Different Configurations of PAO Molecules in Shear Iron Plates†[J]. Chem. J. Chinese Universities, 2019, 40(7): 1472.
Fig.1 Side-view mode of lubricant oil confined between iron surfaces(A) and chemical structures of simulated lubricant molecules(B) The model shear speed is opposite for two iron surfaces.
| Pairwise | σ/nm | ε/eV |
|---|---|---|
| Fe-CH3 | 0.368 | 0.029 |
| Fe-CH2 | 0.350 | 0.021 |
| Fe-CH | 0.370 | 0.020 |
Table 1 Forced field parameters between PAO and metal ions
| Pairwise | σ/nm | ε/eV |
|---|---|---|
| Fe-CH3 | 0.368 | 0.029 |
| Fe-CH2 | 0.350 | 0.021 |
| Fe-CH | 0.370 | 0.020 |
Fig.5 Microscopic distribution of PAOpe(A), PAOpp(B) and PAOpd(C) molecules in systemsLeft: around ion surface. Number density percentage of central atom of the molecule PAO in three systems. The irons atoms are shown as purple CPK models, green balls for second ad-layer atoms, cyan balls for first ad-layer. Right: local amplifications of the adsorption conformation. The first ad-layer PAO molecules are shown as cyan sticks, green balls for second ad-layer atoms.
Fig.6 Top view distribution conformation of PAOpe(A, B), PAOpp(C, D) and PAOpd(E, F) molecules adsorption layer on iron surface (A), (C) and (E) The first adsorption layer conformations of PAO on iron surface(shown as cyan sticks); (B), (D) and (F) the second adsorption layer conformations of PAO on iron surface(shown as green balls).
| [1] | Carré D.J., Kalogeras C. G., Didziulis S. V., Fleischauer P. D., Bauer R., 6th European Space Mechanism and Tribology Symposium, 1995, 374, 177—183 |
| [2] | Rudnick L.R., Shubkin R. L., Synthetic Lubricants and High-performance Functional Fluids, Translated by Li P. Q., Guan Z. J., Geng Y. J., China Petroleum Industrial Press, Beijing, 2006 |
| (李普庆, 关子杰, 耿英杰. 译, 合成润滑剂及其应用, 北京: 中国石化出版社, 2006) | |
| [3] | Zhang J.J., Chen B. Y., Yang S. J., Pan J. L., Xue F., Guangzhou Chemical Industry, 2017, 45(18), 150—151 |
| (张俊杰, 陈炳耀, 杨善杰, 潘津炼, 薛飞. 广州化工, 2017, 45(18), 150—151) | |
| [4] | Liu W.M., Xu J., Feng D. P., Wang X. B., Tribology, 2013, 33(1), 91—104 |
| (刘维民, 许俊, 冯大鹏, 王晓波. 摩擦学学报, 2013, 33(1), 91—104) | |
| [5] | Dube M.J., Bollea D., Jones W. R. Jr., Marchetti M., Jansen M. J., Tribology Letters, 2003, 15(1), 3—8 |
| [6] | Drummond C., Israelachvili J., Macromolecules, 2000, 33(13), 4910—4920 |
| [7] | Guo K., Yuan S.L., Liu C. B., Chem. J. Chinese Universities, 2015, 36(11), 2171—2178 |
| (郭凯, 苑世领, 刘成卜. 高等学校化学学报, 2015, 36(11), 2171—2178) | |
| [8] | Ma Y., Zhang H., Yuan S.L., Chem. J. Chinese Universities, 2015, 36(2), 386—394 |
| (马莹, 张恒, 苑世领. 高等学校化学学报, 2015, 36(2), 386—394) | |
| [9] | Hu L.M., Lin C. G., Wang L., Yuan S. L., Acta Phys.-Chim. Sinica, 2014, 11, 2149—2156 |
| (胡立梅, 蔺存国, 王利, 苑世领. 物理化学学报, 2014, 11, 2149—2156) | |
| [10] | Stevens M.J., Mondello M., Grest G. S., Cui S. T., Cochran H. D., Cummings P. T., J. Chem. Phys., 1997, 106(17), 7303—7314 |
| [11] | Tseng H.C., Wu J. S., Chang R. Y., J. Chem. Phys., 2008, 129(1), 189—209 |
| [12] | Kioupis L. I., Maginn E. J., J. Phys. Chem. B, 1999, 103(49), 10781—10790 |
| [13] | Materials Studio, Release 4.4, Accelrys Software Inc., San Diego, 2008 |
| [14] | Van D.S. D., Lindahl E., Hess B., Groenhof G., Mark A. E., Berendsen H. J., J. Comput. Chem., 2010, 26(16), 1701—1718 |
| [15] | Hess B., Kutzner C., Spoel D., Lindahl E., J. Chem. Theory Comput., 2008, 4(3), 435—447 |
| [16] | Oostenbrink C., Villa A., Mark A. E., van Gunsteren W. F., J. Comput. Chem., 2004, 25(13), 1656—1676 |
| [17] | Ta T.D., Tieu A. K., Zhu H., Zhu Q., Kosasih P. B., Zhang J., Deng G., ACS Appl. Mater. Interfaces, 2016, 8(8), 5641—5652 |
| [18] | Erbaş A., Horinek D., Netz R. R., J. Am. Chem. Soc., 2012, 134(1), 623—630 |
| [19] | Falk K., Sedlmeier F., Joly L., Netz R. R., Bocquet L., Nano Lett., 2010, 10(10), 4067—4073 |
| [20] | Wang C., Wen B., Tu Y., Wan R., Fang H., J. Phys. Chem. C, 2015, 119(21), 11679—11684 |
| [1] | GAO Zhiwei, LI Junwei, SHI Sai, FU Qiang, JIA Junru, AN Hailong. Analysis of Gating Characteristics of TRPM8 Channel Based on Molecular Dynamics [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220080. |
| [2] | ZENG Xianyang, ZHAO Xi, HUANG Xuri. Mechanism of Inhibition of Glucose and Proton Cotransport Protein GlcPSe by Cytochalasin B [J]. Chem. J. Chinese Universities, 2022, 43(4): 20210822. |
| [3] | CHEN Hanxiang, BIAN Shaoju, HU Bin, LI Wu. Molecular Simulation of the Osmotic Pressures for LiCl-NaCl-KCl-H2O Solution System [J]. Chem. J. Chinese Universities, 2022, 43(3): 20210727. |
| [4] | HU Bo, ZHU Haochen. Dielectric Constant of Confined Water in a Bilayer Graphene Oxide Nanosystem [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210614. |
| [5] | ZHANG Mi, TIAN Yafeng, GAO Keli, HOU Hua, WANG Baoshan. Molecular Dynamics Simulation of the Physicochemical Properties of Trifluoromethanesulfonyl Fluoride Dielectrics [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220424. |
| [6] | ZHANG Lingyu, ZHANG Jilong, QU Zexing. Dynamics Study of Intramolecular Vibrational Energy Redistribution in RDX Molecule [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220393. |
| [7] | LI Congcong, LIU Minghao, HAN Jiarui, ZHU Jingxuan, HAN Weiwei, LI Wannan. Theoretical Study of the Catalytic Activity of VmoLac Non-specific Substrates Based on Molecular Dynamics Simulations [J]. Chem. J. Chinese Universities, 2021, 42(8): 2518. |
| [8] | LEI Xiaotong, JIN Yiqing, MENG Xuanyu. Prediction of the Binding Site of PIP2 in the TREK-1 Channel Based on Molecular Modeling [J]. Chem. J. Chinese Universities, 2021, 42(8): 2550. |
| [9] | LIU Shasha, ZHANG Heng, YUAN Shiling, LIU Chengbu. Molecular Dynamics Simulation of Pulsed Electric Field O/W Emulsion Demulsification [J]. Chem. J. Chinese Universities, 2021, 42(7): 2170. |
| [10] | ZENG Yonghui, YAN Tianying. Vibrational Density of States Analysis of Proton Hydration Structure [J]. Chem. J. Chinese Universities, 2021, 42(6): 1855. |
| [11] | LIU Aiqing, XU Wensheng, XU Xiaolei, CHEN Jizhong, AN Lijia. Molecular Dynamics Simulation of Polymer/rod Nanocomposite [J]. Chem. J. Chinese Universities, 2021, 42(3): 875. |
| [12] | QI Renrui, LI Minghao, CHANG Hao, FU Xueqi, GAO Bo, HAN Weiwei, HAN Lu, LI Wannan. Theoretical Study on the Unbinding Pathway of Xanthine Oxidase Inhibitors Based on Steered Molecular Dynamics Simulation [J]. Chem. J. Chinese Universities, 2021, 42(3): 758. |
| [13] | HE Jinlu, LONG Run, FANG Weihai. A-site Cation Effects on Hot Carrier Relaxation in Perovskites by Nonadiabatic Molecular Dynamics Simulations [J]. Chem. J. Chinese Universities, 2020, 41(3): 439. |
| [14] | ZHU Yuquan, ZHAO Xiaojie, ZHONG Yuan, CHEN Ziru, YAN Hong, DUAN Xue. Theoretical Study on the Construction and Characteristics of the Host-guest Intercalated Structure of Layered Double Hydroxides [J]. Chem. J. Chinese Universities, 2020, 41(11): 2287. |
| [15] | QU Siying, XU Qin. Different Roles of Some Key Residues in the S4 Pocket of Coagulation Factor Xa for Rivaroxaban Binding † [J]. Chem. J. Chinese Universities, 2019, 40(9): 1918. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||