Chem. J. Chinese Universities ›› 2019, Vol. 40 ›› Issue (3): 567.doi: 10.7503/cjcu20180561
• Polymer Chemistry • Previous Articles Next Articles
ZHANG Enshuang, LÜ Tong, LIU Tao, HUANG Hongyan, LIU Yuanyuan, GUO Hui, LI Wenjing*(), ZHAO Yingmin*(
), YANG Jieying
Received:
2019-08-10
Online:
2019-01-24
Published:
2019-01-24
Contact:
LI Wenjing,ZHAO Yingmin
E-mail:ht31wj@126.com;zhaoyingmin-0502@163.com
CLC Number:
TrendMD:
ZHANG Enshuang,LÜ Tong,LIU Tao,HUANG Hongyan,LIU Yuanyuan,GUO Hui,LI Wenjing,ZHAO Yingmin,YANG Jieying. Preparation of Graphene/Carbon Aerogel and Its Applied Research in Multi-frequency Band Electromagnetic Interference[J]. Chem. J. Chinese Universities, 2019, 40(3): 567.
Fig.3 Nitrogen sorption isotherms(A—F) and BJH pore size distributions(inset) of the CA(A),2%G-CA(B), 4%G-CA(C), 5%G-CA(D), 7%G-CA(E) and 100%GA(F)a. Desorption; b. adsorption.
Sample | Bulk density/(g·cm-3) | Shrinkage rate(%) | Conductivity/(S·m-1) | D(0.5)/μm |
---|---|---|---|---|
CA | 0.154 | 78 | 3.89 | 3.5 |
2%G-CA | 0.092 | 68 | 87.6 | 4.5 |
4%G-CA | 0.030 | 63 | 114.2 | 9.1 |
5%G-CA | 0.014 | 53 | 238.5 | 10.2 |
7%G-CA | 0.009 | 35 | 2880 | 14.8 |
100%GA | 0.126 | 86 | 3165 | 13.8 |
Table 1 Density and conductivity of graphene/carbon aerogels
Sample | Bulk density/(g·cm-3) | Shrinkage rate(%) | Conductivity/(S·m-1) | D(0.5)/μm |
---|---|---|---|---|
CA | 0.154 | 78 | 3.89 | 3.5 |
2%G-CA | 0.092 | 68 | 87.6 | 4.5 |
4%G-CA | 0.030 | 63 | 114.2 | 9.1 |
5%G-CA | 0.014 | 53 | 238.5 | 10.2 |
7%G-CA | 0.009 | 35 | 2880 | 14.8 |
100%GA | 0.126 | 86 | 3165 | 13.8 |
Sample | Shield ratio(%) | |||
---|---|---|---|---|
Infrared band | Visible band | Millimeter wave | ||
3—5 μm | 8—12 μm | |||
CA | 96.4±1.9(5 s) | 90.4±0.9(5 s) | 92.7±1.9(5 s) | 0(5 s) |
90.0±1.8(20 min) | 81.6±1.6(20 min) | 90.0±1.8(20 min) | 0(10 min) | |
2%G-CA | 99.5±2.0(5 s) | 97.6±2.0(5 s) | 95.5±1.9(5 s) | 33.1±0.3(5 s) |
94.2±1.9(20 min) | 83.2±1.6(20 min) | 88.9±1.8(20 min) | 28.3±0.3(10 min) | |
4%G-CA | 95.0±1.9(5 s) | 95.4±1.9(5 s) | 95.0±1.9(5 s) | 78.0±0.8(5 s) |
92.5±1.8(20 min) | 88.4±1.7(20 min) | 92.5±1.9(20 min) | 60.0±0.6(10 min) | |
5%G-CA | 99.8±2.0(5 s) | 98.7±2.0(5 s) | 95.4±1.9(5 s) | 79.3±0.8(5 s) |
96.9±1.9(20 min) | 88.4±1.7(20 min) | 94.3±1.9(20 min) | 61.8±0.6(10 min) | |
7%G-CA | 99.8±2.0(5 s) | 97.2±1.9(5 s) | 97.2±1.9(5 s) | 75.8±0.8(5 s) |
96.6±1.9(20 min) | 95.7±1.9(20 min) | 94.0±1.9(20 min) | 65.2±0.7(10 min) | |
100%GA | 99.9±2.0(5 s) | 97.2±1.9(5 s) | 97.9±2.0(5 s) | 78.4±0.8(5 s) |
97.8±1.9(20 min) | 93.9±1.9(20 min) | 80.4±1.6(20 min) | 48.9±0.5(10 min) |
Table 2 Shielding ratio of graphene/carbon aerogels with various proportions in different wave band
Sample | Shield ratio(%) | |||
---|---|---|---|---|
Infrared band | Visible band | Millimeter wave | ||
3—5 μm | 8—12 μm | |||
CA | 96.4±1.9(5 s) | 90.4±0.9(5 s) | 92.7±1.9(5 s) | 0(5 s) |
90.0±1.8(20 min) | 81.6±1.6(20 min) | 90.0±1.8(20 min) | 0(10 min) | |
2%G-CA | 99.5±2.0(5 s) | 97.6±2.0(5 s) | 95.5±1.9(5 s) | 33.1±0.3(5 s) |
94.2±1.9(20 min) | 83.2±1.6(20 min) | 88.9±1.8(20 min) | 28.3±0.3(10 min) | |
4%G-CA | 95.0±1.9(5 s) | 95.4±1.9(5 s) | 95.0±1.9(5 s) | 78.0±0.8(5 s) |
92.5±1.8(20 min) | 88.4±1.7(20 min) | 92.5±1.9(20 min) | 60.0±0.6(10 min) | |
5%G-CA | 99.8±2.0(5 s) | 98.7±2.0(5 s) | 95.4±1.9(5 s) | 79.3±0.8(5 s) |
96.9±1.9(20 min) | 88.4±1.7(20 min) | 94.3±1.9(20 min) | 61.8±0.6(10 min) | |
7%G-CA | 99.8±2.0(5 s) | 97.2±1.9(5 s) | 97.2±1.9(5 s) | 75.8±0.8(5 s) |
96.6±1.9(20 min) | 95.7±1.9(20 min) | 94.0±1.9(20 min) | 65.2±0.7(10 min) | |
100%GA | 99.9±2.0(5 s) | 97.2±1.9(5 s) | 97.9±2.0(5 s) | 78.4±0.8(5 s) |
97.8±1.9(20 min) | 93.9±1.9(20 min) | 80.4±1.6(20 min) | 48.9±0.5(10 min) |
Fig.6 Transmittance and shielding ratio curves of aerogels powder for different wave band(A) Infrared band(3—5 μm); (B) infrared band(8—12 μm); (C) visible band; (D) millimeter waves.
[1] | Chen H., Gao X. B., Li T. P., Yao Q., Wei Y. M., Aerodynamic Missile Journal, 2017, 10(12), 71—74 |
(陈浩, 高欣宝, 李天鹏, 姚强, 魏咏梅. 飞航导弹, 2017, 10(12), 71—74) | |
[2] | Yang X. W., Li C. W., Laser & Infrared, 2012, 42(2), 170—174 |
(杨希伟, 李长伟. 激光与红外, 2012, 42(2), 170—174) | |
[3] | Yu N., Li J. S., Wang X. Z., Chen T. X., Transducer and Microsystem Technologies, 2012, 31(1), 23—25 |
(余宁, 李俊山, 王新增, 陈特熙. 传感器与微系统, 2012, 31(1), 23—25) | |
[4] | Liu S. T., Jiang N., Wang L. T., Laser & Infrared, 2016, 46(8), 985—988 |
(刘松涛, 姜宁, 王龙涛. 激光与红外, 2016, 46(8), 985—988) | |
[5] | Jin Y. L., Wang X. F., Li F. G., Tactical Missile Technology, 2011, (1), 122—126 |
(淦元柳, 王晓飞, 李富国. 战术导弹技术, 2011, (1), 122—126) | |
[6] | Bai Y. D., Wu T., Infrared, 2013, 35(5), 39—45 |
(百玉栋, 吴涛. 红外技术, 2013, 35(5), 39—45) | |
[7] | Feng C. G., Qiao X. J., Li W. C., Science & Technology Review, 2014, 32(4), 110—115 |
(冯长根, 乔小晶, 李旺昌. 科技导报, 2014, 32(4), 110—115) | |
[8] | Shvajkovskij V., Koblev V. D., Devjatkin S. L., Method of Protecting Land and Sea-based Equipment. RU 2371665C2,2009-10-27 |
[9] | Zhang D. M., Zhao S. H., Qiao Y. H., Cao W. J., Zhu C. T., Infrared Technology, 2008, 30(7), 376—383 |
(张冬梅, 赵升红, 乔衍华, 曾文杰, 朱春婷. 红外技术, 2008, 30(7), 376—378) | |
[10] | Yu S. H., Infrareds and Millimeter-wave Composite Interference Materials, Nanjing University of Science & Technology, Nanjing, 2009 |
(余斯辉. 红外毫米波复合干扰材料研究, 南京: 南京理工大学, 2009) | |
[11] | Li Y. L., Ying S. N., Chen G. G., Advanced Materials Industry, 2013, 9, 38—41 |
(李友良, 应淑妮, 陈国贵. 新材料产业, 2013, 9, 38—41) | |
[12] | Chen Z., Zhu C. G., Feng Y. O., Initiators & Pyrotechnics, 2017, 4, 24—27 |
(陈泽, 朱晨光, 封亚欧. 火工品, 2017, 4, 24—27) | |
[13] | Lu Y., Ling Y. S., Feng Y. S., Modern Defence Technology, 2004, 32(3), 23—26 |
(路远, 凌永顺, 冯云松. 现代防御技术, 2004, 32(3), 23—26 | |
[14] | Shi X., Lou W. G., Li X. G., Modern Defence Technology, 2007, 35(4), 113—116 |
(时翔, 娄国伟, 李兴国. 现代防御技术, 2007, 35(4), 113—116) | |
[15] | Du G. P., Miu Y. K., Zhang L., Initiators & Pyrotechnics, 2005, 1, 14—16 |
(杜桂萍, 缪云坤, 张良. 火工品, 2005, 1, 14—16) | |
[16] | Wu H., Ma Y. J., Zhu D. S., Pei C. H., Infrared Technology, 2013, 35(4), 242—246 |
(吴慧, 马拥军, 朱东升, 裴重华. 红外技术, 2013, 35(4), 242—246) | |
[17] | Lawrence W. H., Journal of Non-Crystalline Solids, 1998, 225, 335—342 |
[18] | Wu Z.S.., Shu B. Y., Yi S.,J. Am. Chem. Soc., 2012, 134(22), 9082—9085 |
[19] | Wang H. X., Song Z. B., Yang N. C., Ma J., Advanced Materials Research,2012, 602—604, 165—168 |
[20] | Du X., Liu H. Y., Mai Y. W., ACS Nano, 2016, 10(1), 453—462 |
[21] | Wang H., Guo Y.Q.., Zeng L. K.,J. Non-Crystalline Solids, 2015, 428(15), 1—5 |
[22] | Kostarelos K., Novoselov K. S., Science, 2014, 344(6181), 261—263 |
[23] | Guan D. Y., Shen J., Liu N. P., Chemistry Letters, 2015, 44(10), 827—832 |
[24] | Liu X. C., Li S. M., Mei J., J. Mater. Chem. A, 2014, 2, 14429—14438 |
[25] | Hao F. B., Zhang Z. W., Yin L. W., ACS Appl. Mater. Interfaces, 2013, 5(17), 8337—8344 |
[26] | Dai H. Y., Yang H. Y., Liu X., Chem. J. Chinese Universities, 2019, 39(2), 351—358 |
(代红艳, 杨慧敏, 刘宪. 高等学校化学学报, 2019, 39(2), 351—358) | |
[27] | De M. X., Xiao G. Z., Huang L., Chem. J. Chinese Universities, 2019, 39(2), 343—350 |
(狄沐昕, 肖国正, 黄鹂. 高等学校化学学报, 2019, 39(2), 343—350) | |
[28] | Li Y. Q., Zhu Q., Xiao Z. L., Chem. J. Chinese Universities, 2019, 39(4), 636—644 |
(李雨晴, 朱钦, 肖忠良. 高等学校化学学报, 2019, 39(4), 636—644) | |
[29] | Wang H. X., Liu D. Z., Song Z. B., Laser & Infrared, 2007, 37(3), 262—265 |
(王红霞, 刘代志, 宋子彪. 激光与红外, 2007, 37(3), 262—265) | |
[30] | Wang H. X., Liu D. Z., Song Z. B., Infrared Technology, 2007, 29(6), 324—327 |
(王红霞, 刘代志, 宋子彪. 红外技术, 2007, 29(6), 324—327) | |
[31] | Wei J. Y., Gao Z. H., Huang W., Ai P. P., Yan F. F., You X. X., Chem. J. Chinese Universities, 2019, 39(8), 1741—174 |
(魏珺谊, 高志华, 黄伟, 艾培培, 闫飞飞, 游向轩. 高等学校化学学报, 2019, 39(8), 1741—1749) | |
[32] | Wan Y. Jun., Zhu P. Li., Yu S. H., Sun R.,Wong C. P., Liao H. L., Small, 2019, 14(27), 1800534 |
[33] | Ferrari A. C., Meyer J. C., Scardaci V., Casiraghi C., Lazzeri M., Piscanec S., Jiang D., Novoselov K. S., Roth S., Geim K. A., Phys. Rev. Lett., 2006, 97(18), 187401 |
[34] | Yoshida A., Kaburagi Y., Hishiyama Y., Carbon, 2006, 44, 2333—2335 |
[35] | Guan H., Study Technology Route of Anti-IR/MMW Compound Smoke Composition, Nanjing University of Science & Technology, Nanjing, 2005 |
(关华. 抗红外/毫米波双模发烟剂技术研究, 南京: 南京理工大学, 2005) | |
[36] | Li N., Study on Preparation and Properties of the Graphite-based Composite Interference Material, Nanjing University of Science & Technology, Nanjing, 2013 |
(李楠. 基于石墨的复合干扰材料制备及性能研究, 南京: 南京理工大学, 2013) |
[1] | WANG Ruina, SUN Ruifen, ZHONG Tianhua, CHI Yuwu. Fabrication of a Dispersible Large-sized Graphene Quantum Dot Assemblies from Graphene Oxide and Its Electrogenerated Chemiluminescence Behaviors [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220161. |
[2] | YAN Jiasen, HAN Xianying, DANG Zhaohan, LI Jiangang, HE Xiangming. Preparation and Performance of Paraffin/Expanded Graphite/Graphene Composite Phase Change Heat Storage Material [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220054. |
[3] | CAO Lei, CHEN Meijun, YUAN Gang, CHANG Gang, ZHANG Xiuhua, WANG Shengfu, HE Hanping. Solution-gated Graphene Field Effect Transistor Sensor Based on Crown Ether Functionalization for the Detection of Mercury Ion [J]. Chem. J. Chinese Universities, 2022, 43(4): 20210688. |
[4] | ZHENG Xuelian, YANG Cuicui, TIAN Weiquan. The Second Order Nonlinear Optical Properties of Azulene-defect Graphene Nanosheets with Full Armchair Edge [J]. Chem. J. Chinese Universities, 2022, 43(3): 20210806. |
[5] | YANG Junge, GAO Chengqian, LI Boxin, YIN Dezhong. Preparation of High Thermal Conductivity Phase Change Monolithic Materials Based on Pickering Emulsion Stabilized by Surface Modified Graphene Oxide [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210593. |
[6] | ZHANG Zhibo, SHANG Han, XU Wenxuan, HAN Guangdong, CUI Jinsheng, YANG Haoran, LI Ruixin, ZHANG Shenghui, XU Huan. Self-Assembly of Graphene Oxide at Poly(3-hydroxybutyrate) Microparticles Toward High-performance Intercalated Nanocomposites [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210566. |
[7] | HU Bo, ZHU Haochen. Dielectric Constant of Confined Water in a Bilayer Graphene Oxide Nanosystem [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210614. |
[8] | YU Bin, CHEN Xiaoyan, ZHAO Yue, CHEN Weichang, XIAO Xinyan, LIU Haiyang. Graphene Oxide-based Cobalt Porphyrin Composites for Electrocatalytic Hydrogen Evolution Reaction [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210549. |
[9] | WANG Xueli, SONG Xiangwei, XIE Yanning, DU Niyang, WANG Zhenxin. Preparation, Characterization of Partially Reduced Graphene Oxide and Its Killing Effect on Human Cervical Cancer Cells [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210595. |
[10] | MA Lijuan, GAO Shengqi, RONG Yifei, JIA Jianfeng, WU Haishun. Theoretical Investigation of Hydrogen Storage Properties of Sc, Ti, V-decorated and B/N-doped Monovacancy Graphene [J]. Chem. J. Chinese Universities, 2021, 42(9): 2842. |
[11] | HUANG Shan, YAO Jiandong, NING Gan, XIAO Qi, LIU Yi. Efficient Determination of Alkaline Phosphatase Activity Based on Graphene Quantum Dots Fluorescent Probes [J]. Chem. J. Chinese Universities, 2021, 42(8): 2412. |
[12] | ZHU Deshuai, ZHAO Jianying, YANG Zhenghui, GUO Haiquan, GAO Lianxun. Graphene Oxide/Polyimide Composites with High Energy Storage Density Based on Multilayer Structure [J]. Chem. J. Chinese Universities, 2021, 42(8): 2694. |
[13] | LIU Yang, LI Qingbo, SUN Jie, ZHAO Xian. Direct Synthesis of Graphene on AlN Substrates via Ga Remote Catalyzation [J]. Chem. J. Chinese Universities, 2021, 42(7): 2271. |
[14] | LI Peihong, ZHANG Chunling, DAI Xueyan, SUI Yanlong. Progress of Graphene Oxide/Polymer Composite Hydrogel [J]. Chem. J. Chinese Universities, 2021, 42(6): 1694. |
[15] | DU Fanglin, WU Bingxin, LIU Jiao, XU Congcong, LI Guofeng, WANG Xing. Research Progress of Graphene-based Hemostatic Sponges [J]. Chem. J. Chinese Universities, 2021, 42(4): 1177. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||