Chem. J. Chinese Universities ›› 2017, Vol. 38 ›› Issue (4): 653.doi: 10.7503/cjcu20160692
• Physical Chemistry • Previous Articles Next Articles
JIN Yanxian1,*(), JIA Wenping1, LIANG Danxia1, LI Fang1, LI Rongrong1, ZHENG Mengmeng1, GAO Weiyi1, NI Jiamin1, HU Jiajie1, WU Tinghua2,*(
)
Received:
2016-09-29
Online:
2017-04-10
Published:
2017-03-23
Contact:
JIN Yanxian,WU Tinghua
E-mail:snowflakej@163.com;thwu@zjut.cn
Supported by:
CLC Number:
TrendMD:
JIN Yanxian, JIA Wenping, LIANG Danxia, LI Fang, LI Rongrong, ZHENG Mengmeng, GAO Weiyi, NI Jiamin, HU Jiajie, WU Tinghua. Performance of WO3 Modified Graphene Supported Pd Nanocatalysts for Formic Acid Electro-oxidation†[J]. Chem. J. Chinese Universities, 2017, 38(4): 653.
Fig.1 XRD patterns of Pd/WO3-RGO with different contents of WO3 and Pd/RGO samplesa. GO; b. 10%WO3-GO; c. 20%WO3-GO; d. 30%WO3-GO; e. Pd/10%WO3-RGO; f. Pd/20%WO3-RGO; g. Pd/30%WO3-RGO; h. Pd/RGO.
Fig.3 Cyclic voltammograms in 0.5 mol/L H2SO4 solution for Pd/WO3-RGO and Pd/RGO electrodesa. Pd/10%WO3-RGO; b. Pd/20%WO3-RGO; c. Pd/30%WO3-RGO; d. Pd/RGO; e. 20%WO3-GO. Scan rate: 50 mV/s.
Fig.4 Cyclic voltammograms in 0.5 mol/L H2SO4+1 mol/L HCOOH solution for Pd/WO3-RGO and Pd/RGO electrodesa. Pd/10%WO3-RGO; b. Pd/20%WO3-RGO; c. Pd/30%WO3-RGO; d. Pd/RGO; e. 20%WO3-GO. f. Pd/15%WO3-RGO; g. Pd/25%WO3-RGO. Scan rate: 50 mV/s.
Fig.5 Chronoamperometric curves at 0.4 V(A) and galvanostatic polarization curves(B) at 4.8 mA/cm2 current density on Pd/WO3-RGO and Pd/RGO electrodes in 0.5 mol/L H2SO4+1 mol/L HCOOH
[1] | Rice C., Ha S., Masel R. I., Wieckowski A., J. Power Sources, 2003, 115(2), 229—235 |
[2] | Wang Y. E., Cao S., Wu W. H., Wu M., Tang Y. W., Lu T. H., Chem. J. Chinese Universities, 2014, 35(11), 2455—2459 |
(王彦恩, 曹爽, 武伟红, 吴敏, 唐亚文, 陆天虹. 高等学校化学学报, 2014,35(11), 2455—2459) | |
[3] | Wu P., Huang Y. Y., Zhou L. Q., Wang Y. B., Bu Y. K., Yao J. N., Electrochim. Acta, 2015, 152, 2859—2876 |
[4] | Jin Y. X., Ma C. A., Shi M. Q., Chu Y. Q., Xu Y. H., Huang T., Huang Q., Miao Y. W., Int. J. Electrochem. Sci., 2012, 7(4), 3399—3408 |
[5] | Li Z. P., Li M. W., Han M. J., Zeng J. H., Li Y. X., Guo Y. Q., Liao S. J., J. Power Sources, 2014, 254, 183—189 |
[6] | Sun Y. R., Du C. Y., An M. C., Du L., Tan Q., Liu C. T., Gao Y. Z., Yin G. P., J. Power Sources, 2015, 300, 245—253 |
[7] | Yang S. D., Shen C. M., Tian Y., Zhang X. G., Gao H. J., Nanoscale,2014, 6, 13154—13162 |
[8] | Ding K. Q., Liu L., Cao Y. L., Yan X. R., Wei H. G., Guo Z. H., Int. J. Hydrogen Energy, 2014, 39, 7326—7337 |
[9] | Yao Z. Q., Yue R. R., Jiang F. X., Zhai C. Y., Ren F. F., Du Y. K., J. Solid State Electrochem., 2013, 17, 2511—2519 |
[10] | Li H. Z., Shen J. Z., Yang G. X., Tang Y. W., Lu T. H., Chem. J. Chinese Universities, 2011, 32(7), 1445—1450 |
(李焕芝, 沈娟章, 杨改秀, 唐亚文, 陆天虹. 高等学校化学学报, 2011,32(7), 1445—1450) | |
[11] | Lu L., Tang Y. W., Chen Y., Chen T. T., Ge C. W., Lu T. H., Chem. J. Chinese Universities, 2014, 35(1), 115—120 |
(陆亮, 唐亚文, 陈煜, 陈婷婷, 葛存旺, 陆天虹. 高等学校化学学报, 2014,35(1), 115—120) | |
[12] | Li R. S., Hao H., Cai W. B., Huang T., Yu A. S., Electrochem. Commun., 2010, 12, 4637—4648 |
[13] | Zhou D. D., Ding L., Cui H., An H., Zhai J. P., Li Q., J. Power Sources, 2013, 222, 1362—1387 |
[14] | Wei H. G., Yan X. R., Wang Q., Wu S. J., Mao Y. B., Luo Z. P., Chen H. R., Sun L. Y., Wei S. Y., Guo Z. H., Energy Environ. Focus, 2013, 2, 7067—7098 |
[15] | Rajesh B., Karthik V., Karthikeyan S., Ravindranathan Thampi K., Bonard J.M., Viswanathan B., Fuel, 2002, 81, 2177—2190 |
[16] | Ma C. A., Jin Y. X., Shi M. Q., Chu Y. Q., Xu Y. H., Jia W. P., Yuan Q. H., Chen J. B., Chen D. K., Chen S. M., J. Electrochem. Soc., 2014, 161(3), F246—F251 |
[17] | Mu Y. Y., Liang H. P., Hu J. S., Jiang L., Wan L. J., J. Phys. Chem. B, 2005, 109, 22212—22216 |
[18] | Shen P. K., Chen K. Y., Tseung A. C. C., J. Electrochem. Soc., 1995, 142, L185—l187 |
[19] | Zhang Z. H., Huang Y. J., Ge J. J., Liu C. P., Lu T. H., Xing W., Electrochem. Commun., 2008, 10, 51—58 |
[20] | Feng L. G., Yan L. A., Cui Z. M., Liu C. P., Xing W., J. Power Sources, 2011, 196, 2469—2474 |
[21] | Zhang D. Y., Ma Z. F., Wang G. X., Konstantinov K., Yuan X. X., Liu H. K., Electrochemical and Solid State Letters, 2006, 9, A423—A426 |
[22] | Tsurumura T., Yoshimoto N., Egashira M., Morita M., Electrochemistry,2012, 80, 916—918 |
[23] | Jayaraman S., Jaramillo T. F., Baeck S. H., McFarland E. W., J Phys. Chem. B, 2005, 109(48), 22958—22966 |
[24] | Park K. W., Choi J. H., Ahn K. S., Sung Y. E., J. Phys. Chem. B, 2004, 108, 5989—5994 |
[25] | Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A., Science,2004, 306(5696), 666—669 |
[26] | Williams J. R., DiCarlo L., Marcus C. M., Science,2007, 317(5838), 638—641 |
[27] | Chen X. M., Wu G. H., Chen J. M., Chen X., Xie Z. X., Wang X. R., J. Am. Chem. Soc., 2011, 133(11), 3693—3695 |
[28] | Xu C., Wang X., Zhu J. W., J. Phys. Chem. C, 2008, 112(50), 19841—19845 |
[29] | Hummers W. S., Offeman R. E., J. Am. Chem. Soc., 1958, 80, 3488—3491 |
[30] | Zhou Y., Liu S., Jiang H. J., Chen H. Y., Electroanal., 2010, 22(12), 1323—1328 |
[31] | Kulesza P. J., Faulkner L. R., J. Electrochem. Soc., 1988, 110(15), 4905—4909 |
[32] | Wu P., Huang Y. Y., Zhou L. Q., Wang Y. B., Bu Y. K., Yao J. N., Electrochim. Acta, 2015, 152, 68—74 |
[33] | Marinsek M., Sala M., Jancar B., J. Power Sources, 2013, 235, 111—115 |
[34] | Wang X., Tang Y. W., Gao Y., Lu T. H. J., Power Sources, 2008, 175(2), 784—788 |
[35] | Raghuveer V., Viswanathan B., J. Power Sources, 2005, 144, 46—59 |
[36] | Cui X. Z., Shi J. L., Chen H. R., Zhang L. X., Guo L. M., Gao J. H., Li J. B., J. Phys. Chem. B, 2008, 112, 12024—12031 |
[1] | WANG Ruina, SUN Ruifen, ZHONG Tianhua, CHI Yuwu. Fabrication of a Dispersible Large-sized Graphene Quantum Dot Assemblies from Graphene Oxide and Its Electrogenerated Chemiluminescence Behaviors [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220161. |
[2] | YAN Jiasen, HAN Xianying, DANG Zhaohan, LI Jiangang, HE Xiangming. Preparation and Performance of Paraffin/Expanded Graphite/Graphene Composite Phase Change Heat Storage Material [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220054. |
[3] | CAO Lei, CHEN Meijun, YUAN Gang, CHANG Gang, ZHANG Xiuhua, WANG Shengfu, HE Hanping. Solution-gated Graphene Field Effect Transistor Sensor Based on Crown Ether Functionalization for the Detection of Mercury Ion [J]. Chem. J. Chinese Universities, 2022, 43(4): 20210688. |
[4] | ZHENG Xuelian, YANG Cuicui, TIAN Weiquan. The Second Order Nonlinear Optical Properties of Azulene-defect Graphene Nanosheets with Full Armchair Edge [J]. Chem. J. Chinese Universities, 2022, 43(3): 20210806. |
[5] | YANG Junge, GAO Chengqian, LI Boxin, YIN Dezhong. Preparation of High Thermal Conductivity Phase Change Monolithic Materials Based on Pickering Emulsion Stabilized by Surface Modified Graphene Oxide [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210593. |
[6] | ZHANG Zhibo, SHANG Han, XU Wenxuan, HAN Guangdong, CUI Jinsheng, YANG Haoran, LI Ruixin, ZHANG Shenghui, XU Huan. Self-Assembly of Graphene Oxide at Poly(3-hydroxybutyrate) Microparticles Toward High-performance Intercalated Nanocomposites [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210566. |
[7] | HU Bo, ZHU Haochen. Dielectric Constant of Confined Water in a Bilayer Graphene Oxide Nanosystem [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210614. |
[8] | YU Bin, CHEN Xiaoyan, ZHAO Yue, CHEN Weichang, XIAO Xinyan, LIU Haiyang. Graphene Oxide-based Cobalt Porphyrin Composites for Electrocatalytic Hydrogen Evolution Reaction [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210549. |
[9] | WANG Xueli, SONG Xiangwei, XIE Yanning, DU Niyang, WANG Zhenxin. Preparation, Characterization of Partially Reduced Graphene Oxide and Its Killing Effect on Human Cervical Cancer Cells [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210595. |
[10] | MA Lijuan, GAO Shengqi, RONG Yifei, JIA Jianfeng, WU Haishun. Theoretical Investigation of Hydrogen Storage Properties of Sc, Ti, V-decorated and B/N-doped Monovacancy Graphene [J]. Chem. J. Chinese Universities, 2021, 42(9): 2842. |
[11] | ZHU Deshuai, ZHAO Jianying, YANG Zhenghui, GUO Haiquan, GAO Lianxun. Graphene Oxide/Polyimide Composites with High Energy Storage Density Based on Multilayer Structure [J]. Chem. J. Chinese Universities, 2021, 42(8): 2694. |
[12] | HUANG Shan, YAO Jiandong, NING Gan, XIAO Qi, LIU Yi. Efficient Determination of Alkaline Phosphatase Activity Based on Graphene Quantum Dots Fluorescent Probes [J]. Chem. J. Chinese Universities, 2021, 42(8): 2412. |
[13] | LIU Yang, LI Qingbo, SUN Jie, ZHAO Xian. Direct Synthesis of Graphene on AlN Substrates via Ga Remote Catalyzation [J]. Chem. J. Chinese Universities, 2021, 42(7): 2271. |
[14] | LI Peihong, ZHANG Chunling, DAI Xueyan, SUI Yanlong. Progress of Graphene Oxide/Polymer Composite Hydrogel [J]. Chem. J. Chinese Universities, 2021, 42(6): 1694. |
[15] | DU Fanglin, WU Bingxin, LIU Jiao, XU Congcong, LI Guofeng, WANG Xing. Research Progress of Graphene-based Hemostatic Sponges [J]. Chem. J. Chinese Universities, 2021, 42(4): 1177. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||