Chem. J. Chinese Universities ›› 2026, Vol. 47 ›› Issue (1): 20250354.doi: 10.7503/cjcu20250354
• Review • Previous Articles
Received:2025-11-24
Online:2026-01-10
Published:2025-12-16
Contact:
LU Yuyuan, AN Lijia
E-mail:yylu@mail.tsinghua.edu.cn;ljan@ciac.ac.cn
Supported by:CLC Number:
TrendMD:
LU Yuyuan, AN Lijia. Progress and Challenges in Shear Banding of Polymer Fluids[J]. Chem. J. Chinese Universities, 2026, 47(1): 20250354.
| [1] | Rubinstein M., Colby R. H., Polymer Physics, Oxford University Press, New York, 2003 |
| [2] | Dealy J. M., Larson R. G., Structure and Rheology of Molten Polymers: from Structure to flow Behavior and Back Again, Hanser Publishers, Munich, 2006 |
| [3] | Wang S. Q., Nonlinear Polymer Rheology: Macroscopic Phenomenology and Molecular Foundation, John Wiley & Sons, Hoboken, 2018 |
| [4] | Malkin A. Y., Rheology Fundamental, ChemTec Publishing, Toronto, 1994 |
| [5] | Macosko C. W., Rheology: Principles, Measurements and Applications, Wiley⁃VCH, New York, 1994 |
| [6] | Morrison F. A., Understanding Rheology, Oxford University Press, New York, 2001 |
| [7] | Doi M., Edwards S. F., The Theory of Polymer Dynamics, Oxford University Press, New York, 1986 |
| [8] | Lu Y., An L., Wang J., Acta Polym. Sin., 2016, 47, 688—697 |
| [9] | Ruan Y., Wang Z., Lu Y., An L., Acta Polym. Sin., 2017, 5, 727—743 |
| [10] | Ruan Y., Lu Y., An L., Acta Polym. Sin., 2018, 12, 1493—1506 |
| [11] | Ma L. C., Mechanistic Investigation of Nonlinear Rheological Behavior in Entangled Polymer Fluids During Start⁃up Shear via Molecular Dynamics Simulation, University of Science and Technology of China, Hefei, 2025 |
| 马立成. 启动剪切下缠结高分子流体非线性流变行为的分子动力学模拟与分子机理研究, 合肥: 中国科学技术大学, 2025 | |
| [12] | Tapadia P., Wang S. Q., Phys. Rev. Lett., 2006, 96, 016001 |
| [13] | Wang S. Q., Ravindranath S., Boukany P., Olechnowicz M., Quirk R. P., Halasa A., Mays J., Phys. Rev. Lett., 2006, 97, 187801 |
| [14] | de Gennes P. G., European Phys. J. E, 2007, 23, 3 |
| [15] | Hatzikiriakos S. G., Prog. Polym. Sci., 2012, 37, 624—643 |
| [16] | Olmsted P. D., Rheologica Acta, 2008, 47, 283—300 |
| [17] | Wang S. Q., Ravindranath S., Boukany P. E., Macromolecules, 2011, 44, 183—190 |
| [18] | Ravindranath S., Wang S. Q., J. Rheology, 2008, 52, 957—980 |
| [19] | Divoux T., Fardin M. A., Manneville S., Lerouge S., Shear Banding of Complex Fluids, in Annual Review of Fluid Mechanics, Davis S. H., Moin P., Eds., Annual Reviews, Palo Alto, 2016, 48, 81—103 |
| [20] | Fielding S. M., Soft Matter, 2007, 3, 1262—1279 |
| [21] | Wang S. Q., Macromol. Chem. Phys., 2019, 220, 1800327 |
| [22] | Doi M., Edwards S. F., J. Chem. Soc., Faraday Transactions 2: Mole. Chem. Phys., 1978, 74, 1789—1801 |
| [23] | Doi M., Edwards S. F., J. Chem. Soc., Faraday Transactions 2: Mole. Chem. Phys., 1978, 74, 1802—1817 |
| [24] | Doi M., Edwards S. F., J. Chem. Soc., Faraday Transactions 2: Mole. Chem. Phys., 1978, 74, 1818—1832 |
| [25] | Doi M., Edwards S. F., J. Chem. Soc., Faraday Transactions 2: Mole. Chem. Phys., 1979, 75, 38—54 |
| [26] | Wang S. Q., Macromol. Mater. Eng., 2007, 292, 15—22 |
| [27] | Burroughs M. C., Zhang Y., Shetty A. M., Bates C. M., Leal L. G., Helgeson M. E., Phys. Rev. Lett., 2021, 126, 207801 |
| [28] | Wang Z., Lam C. N., Chen W. R., Wang W., Liu J., Liu Y., Porcar L., Stanley C. B., Zhao Z., Hong K., Wang Y., Phys. Rev. X, 2017, 7, 031003 |
| [29] | Cao J., Likhtman A. E., Phys. Rev. Lett., 2012, 108, 028302 |
| [30] | Ruan Y., Lu Y., An L., Wang Z. G., ACS Macro Lett., 2021, 10, 1517—1523 |
| [31] | Fielding S. M., Olmsted P. D., Phys. Rev. E, 2003, 68, 036313 |
| [32] | Fielding S. M., Phys. Rev. Lett., 2005, 95, 134501 |
| [33] | Adams J. M., Olmsted P. D., Phys. Rev. Lett., 2009, 102, 067801 |
| [34] | Adams J. M., Fielding S. M., Olmsted P. D., J. Rheol., 2011, 55, 1007—1032 |
| [35] | Cromer M., Villet M. C., Fredrickson G. H., Leal L. G., Phys. Fluids, 2013, 25, 051703 |
| [36] | Cromer M., Fredrickson G. H., Leal L. G., Phys. Fluids, 2014, 26, 063101 |
| [37] | Peterson J. D., Cromer M., Fredrickson G. H., Leal L. G., J. Rheol., 2016, 60, 927—951 |
| [38] | Li Y., Hu M., McKenna G. B., Dimitriou C. J., McKinley G. H., Mick R. M., Venerus D. C., Archer L. A., J. Rheol., 2013, 57, 1411—1428 |
| [39] | Li Y., Hu M., McKenna G. B., Dimitriou C. J., McKinley G. H., Mick R. M., Venerus D. C., Archer L. A., J. Rheol., 2014, 58, 1071—1082 |
| [40] | Ma L. C., Ruan Y. J., Wang Z. H., Lu Y. Y., An L. J., Chinese J. Polym. Sci., 2024, 42, 1811—1823 |
| [41] | Ma L. C., Ruan Y. J., Lu Y. Y., An L. J., Chinese J. Polym. Sci., 2025, 43, 2150—2159 |
| [42] | Marrucci G., Grizzuti N., J. Rheol., 1983, 27, 433—450 |
| [43] | Mead D. W., Larson R. G., Doi M., Macromolecules, 1998, 31, 7895—7914 |
| [44] | Likhtman A. E., McLeish T. C. B., Macromolecules, 2002, 35, 6332—6343 |
| [45] | Graham R. S., Likhtman A. E., McLeish T. C. B., Milner S. T., J. Rheol., 2003, 47, 1171—1200 |
| [46] | Likhtman A. E., Graham R. S., J. Non⁃Newton. Fluid Mech., 2003, 114, 1—12 |
| [47] | Xie S. J., Schweizer K. S., Macromolecules, 2018, 51, 4185—4200 |
| [48] | Schweizer K. S., Xie S. J., ACS Macro Lett., 2018, 7, 218—222 |
| [49] | de Gennes P. G., J. Chem. Phys., 1971, 55, 572—579 |
| [50] | Osaki K., Inoue T., Isomura T., J. Polym. Sci. Part B: Polym. Phys., 2000, 38, 1917—1925 |
| [51] | Osaki K., Inoue T., Uematsu T., J. Polym. Sci. Part B: Polym. Phys., 2000, 38, 3271—3276 |
| [52] | Pearson D. S., Kiss A. D., Fetters L. J., Doi M., J. Rheol., 1989, 33, 517—535 |
| [53] | McLeish T. C. B., Ball R. C., J. Polym. Sci. Part B: Polym. Phys., 1986, 24, 1735—1745 |
| [54] | McLeish T. C. B., J. Polym. Sci. Part B: Polym. Phys., 1987, 25, 2253—2264 |
| [55] | Ianniruberto G., Marrucci G., Masubuchi Y., Macromolecules, 2020, 53, 5023—5033 |
| [56] | Doi M., J. Polym. Sci.: Polym. Phys. Ed., 1983, 21, 667—684 |
| [57] | Viovy J. L., Rubinstein M., Colby R. H., Macromolecules, 1991, 24, 3587—3596 |
| [58] | Marrucci G., J. Non⁃Newton. Fluid Mech., 1996, 62, 279—289 |
| [59] | Spenley N. A., Cates M. E., McLeish T. C. B., Phys. Rev. Lett., 1993, 71, 939—942 |
| [60] | Britton M. M., Callaghan P. T., Phys. Rev. Lett., 1997, 78, 4930—4933 |
| [61] | Callaghan P. T., Gil A. M., Macromolecules, 2000, 33, 4116—4124 |
| [62] | Boukany P. E., Wang S. Q., Soft Matter, 2009, 5, 780—789 |
| [63] | Wang S. Q., Ravindranath S., Wang Y., Boukany P., J. Chem. Phys., 2007, 127, 064903 |
| [64] | Hemingway E. J., Fielding S. M., Phys. Rev. Lett., 2018, 120, 138002 |
| [65] | Hu Y. T., Wilen L., Philips A., Lips A., J. Rheol., 2007, 51, 275—295 |
| [66] | Hu Y. T., J. Rheol., 2010, 54, 1307—1323 |
| [67] | Hayes K. A., Buckley M. R., Cohen I., Archer L. A., Phys. Rev. Lett., 2008, 101, 218301 |
| [68] | Wang S. Q., Wang Y., Cheng S., Li X., Zhu X., Sun H., Macromolecules, 2013, 46, 3147—3159 |
| [69] | Fielding S. M., J. Rheol., 2016, 60, 821—834 |
| [70] | Ruan Y., Lu Y., An L., Wang Z. G., Macromolecules, 2024, 57, 2792—2800 |
| [71] | Schieber J. D., Neergaard J., Gupta S., J. Rheol., 2003, 47, 213—233 |
| [72] | Schieber J. D., J. Chem. Phys., 2003, 118, 5162—5166 |
| [73] | Schieber J. D., Andreev M., Annu. Rev. Chem. Biomol. Engineer., 2014, 5, 367—381 |
| [74] | Steenbakkers R. J. A., Tzoumanekas C., Li Y., Liu W. K., Kröger M., Schieber J. D., New J. Phys., 2014, 16, 015027 |
| [75] | Likhtman A. E., Macromolecules, 2005, 38, 6128—6139 |
| [76] | Masubuchi Y., Takimoto J. I., Koyama K., Ianniruberto G., Marrucci G., Greco F., J. Chem. Phys., 2001, 115, 4387—4394 |
| [77] | Chappa V. C., Morse D. C., Zippelius A., Müller M., Phys. Rev. Lett., 2012, 109, 148302 |
| [78] | Uneyama T., Masubuchi Y., J. Chem. Phys., 2012, 137, 154902 |
| [79] | Kremer K., Grest G. S., J. Chem. Phys., 1990, 92, 5057—5086 |
| [80] | Lee W. B., Kremer K., Macromolecules, 2009, 42, 6270—6276 |
| [81] | Ramírez J., Sukumaran S. K., Vorselaars B., Likhtman A. E., J. Chem. Phys., 2010, 133, 154103 |
| [82] | Kröger M., Hess S., Phys. Rev. Lett., 2000, 85, 1128—1131 |
| [83] | Xu X., Chen J., An L., J. Chem. Phys., 2014, 140, 174902 |
| [84] | Cao J., Likhtman A. E., ACS Macro Lett., 2015, 4, 1376—1381 |
| [85] | Everaers R., Sukumaran S. K., Grest G. S., Svaneborg C., Sivasubramanian A., Kremer K., Science, 2004, 303, 823—826 |
| [86] | Sukumaran S. K., Grest G. S., Kremer K., Everaers R., J. Polymer Science Part B: Polym. Phys., 2005, 43, 917—933 |
| [87] | Hsu H. P., Kremer K., ACS Macro Lett., 2018, 7, 107—111 |
| [88] | Hsu H. P., Kremer K., Macromolecules, 2019, 52, 6756—6772 |
| [89] | Kröger M., Comput. Phys. Commun., 2005, 168, 209—232 |
| [90] | Shanbhag S., Kröger M., Macromolecules, 2007, 40, 2897—2903 |
| [91] | Kröger M., Dietz J. D., Hoy R. S., Luap C., Comput. Phys. Commun., 2023, 283, 108567 |
| [92] | Tzoumanekas C., Theodorou D. N., Macromolecules, 2006, 39, 4592—4604 |
| [93] | Anogiannakis S. D., Tzoumanekas C., Theodorou D. N., Macromolecules, 2012, 45, 9475—9492 |
| [94] | Sliozberg Y. R., Yeh I. C., Kröger M., Masser K. A., Lenhart J. L., Andzelm J. W., Macromolecules, 2018, 51, 9635—9648 |
| [95] | Ben⁃Naim E., Grest G. S., Witten T. A., Baljon A. R. C., Phys. Rev. E, 1996, 53, 1816—1822 |
| [96] | Likhtman A. E., Ponmurugan M., Macromolecules, 2014, 47, 1470—1481 |
| [97] | Cao J., Qin J., Milner S. T., Macromolecules, 2015, 48, 99—110 |
| [98] | Baig C., Mavrantzas V. G., Kröger M., Macromolecules, 2010, 43, 6886—6902 |
| [99] | Hass J., Heil C., Weir M., Thomas’ Calculus, 14th Ed., Pearson, Boston, 2017 |
| [100] | Shin S., Kou Y., Dorfman K. D., Cheng X., Macromolecules, 2021, 54, 4186—4197 |
| [101] | Olmsted P. D., Radulescu O., Lu C. Y. D., J. Rheol., 2000, 44, 257—275 |
| [102] | Foteinopoulou K., Karayiannis N. C., Mavrantzas V. G., Kröger M., Macromolecules, 2006, 39, 4207—4216 |
| [1] | HU Yuteng, SANG Lixia, DU Chunxu. Interfacial Performances of MoS2-H2O Depended on Plasmonic Metal and Its Localized Thermal Effect [J]. Chem. J. Chinese Universities, 2025, 46(5): 20240569. |
| [2] | TAN Yingjia, CHEN Liang, LIU Yulin, NA Risong, ZHAO Xi. Discovery of CDK2 Inhibitors Based on Machine Learning and Molecular Dynamics Simulations [J]. Chem. J. Chinese Universities, 2025, 46(3): 20240442. |
| [3] | XIE Chongmo, LU Yuyuan, AN Lijia, WANG Zhenhua, WANG Jian, LI Minglun. Study on the Dynamics of Polymer Chains in Quasi-two-dimensional Confined Systems [J]. Chem. J. Chinese Universities, 2025, 46(12): 20250247. |
| [4] | HAN Yugui, LIU Changlong, ZHAO Peng, ZHENG Wenwen, LIU Yuepeng, LI Yi. Interaction Between Hot Water Chemical Drive System and Thick Oil Components and Theoretical Simulation Research [J]. Chem. J. Chinese Universities, 2024, 45(6): 20230456. |
| [5] | FANG Yi, LI Yingjie, ZHANG Youhao, REN Yu, HAN Kuihua, ZHAO Jianli. Study on Diffusion Mechanism of CaO/Ca(OH)2 Molecules During Thermochemical Energy Storage Process Based on Molecular Dynamics [J]. Chem. J. Chinese Universities, 2024, 45(5): 20240052. |
| [6] | CAO Huawen, TANG Qiufan, QU Bei, HUO Huan, ZHENG Qilong, CAO Yilin, LI Jizhen. Multi-stage Thermal Decomposition Mechanism of Energetic Plasticizer DNTN Triggered by Cleavage of the Nitrate Ester Bond [J]. Chem. J. Chinese Universities, 2024, 45(2): 20230398. |
| [7] | ZHAO Can, SUN Guangkai, LEI Bocheng, ZHANG Lili, SUN Zhaoyan, ZHU Youliang. Crystallization Behaviors of Polydisperse Ultra⁃soft Spherical System [J]. Chem. J. Chinese Universities, 2024, 45(12): 20240388. |
| [8] | FU Zhongheng, CHEN Xiang, YAO Nan, YU Legeng, SHEN Xin, ZHANG Rui, ZHANG Qiang. Research Advances in Transport Mechanism of Lithium Ions in Solid Electrolytes [J]. Chem. J. Chinese Universities, 2023, 44(5): 20220703. |
| [9] | SONG Xinyue, WEI Yue, SHEN Jie, SHI Dean, YANG Huawei, LUAN Shifang. Impact Resistance Mechanism of Ultra-high Molecular Weight Polyethylene Molded Sheet [J]. Chem. J. Chinese Universities, 2023, 44(4): 20220641. |
| [10] | LI Jichen, CAI Shanshan, PENG Jubo, LI Hongfei, DUAN Xiaozheng. Molecular Dynamics Simulation of Structural Variations of Ionic Polymeric Vesicles under Electric Field [J]. Chem. J. Chinese Universities, 2023, 44(2): 20220553. |
| [11] | SHEN Qi, CHEN Haiyao, GAO Denghui, ZHAO Xi, NA Risong, LIU Jia, HUANG Xuri. Interaction Mechanism of the Natural Product Falcarindiol and Human GABAA Receptor [J]. Chem. J. Chinese Universities, 2023, 44(2): 20220500. |
| [12] | HAO Qinghai, YANG Fan, QING Che, TAN Hongge. Surface Morphologies of Polyzwitterionic Brushes Induced by Electrostatic Strength and Counterion Valence [J]. Chem. J. Chinese Universities, 2023, 44(12): 20230279. |
| [13] | ZHOU Zihao, WANG Sihao, HUANG Daichuan, LIU Bo, NING Hongbo. Molecular Dynamics Simulation Study on High Temperature Oxidation Mechanism of n-Propylbenzene [J]. Chem. J. Chinese Universities, 2023, 44(11): 20230276. |
| [14] | LIAO Shouwei, LIU Yanchang, SHI Zenan, ZHAO Daohui, WEI Yanying, LI Libo. Molecular Dynamics Simulation of Ion Adsorption at Water/Graphene Interface: Force Field Parameter Optimization and Adsorption Mechanism [J]. Chem. J. Chinese Universities, 2023, 44(10): 20230155. |
| [15] | GAO Zhiwei, LI Junwei, SHI Sai, FU Qiang, JIA Junru, AN Hailong. Analysis of Gating Characteristics of TRPM8 Channel Based on Molecular Dynamics [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220080. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
