Chem. J. Chinese Universities ›› 2024, Vol. 45 ›› Issue (5): 20240052.doi: 10.7503/cjcu20240052
• Physical Chemistry • Previous Articles Next Articles
FANG Yi, LI Yingjie(), ZHANG Youhao, REN Yu, HAN Kuihua, ZHAO Jianli
Received:
2024-01-29
Online:
2024-05-10
Published:
2024-03-06
Contact:
LI Yingjie
E-mail:liyj@sdu.edu.cn
Supported by:
CLC Number:
TrendMD:
FANG Yi, LI Yingjie, ZHANG Youhao, REN Yu, HAN Kuihua, ZHAO Jianli. Study on Diffusion Mechanism of CaO/Ca(OH)2 Molecules During Thermochemical Energy Storage Process Based on Molecular Dynamics[J]. Chem. J. Chinese Universities, 2024, 45(5): 20240052.
Simulation area | 8 nm × 8 nm × 8 nm | Energy minimization | Run 10 ps with fixed bond order |
---|---|---|---|
Radius of CaO grains | 2 nm | Step | 0.1 fs |
Radius of Ca(OH)2 grains | 2 nm | Total time | 100 ps |
Ensemble | NVT |
Table 1 Parameters in the MD simulation
Simulation area | 8 nm × 8 nm × 8 nm | Energy minimization | Run 10 ps with fixed bond order |
---|---|---|---|
Radius of CaO grains | 2 nm | Step | 0.1 fs |
Radius of Ca(OH)2 grains | 2 nm | Total time | 100 ps |
Ensemble | NVT |
Sample | Surface area/(m2‧g-1) | Pore volume/(cm3‧g-1) |
---|---|---|
Original CaO | 13 | 0.05 |
CaO after 10 cycles | 18 | 0.10 |
Table 2 Surface areas and pore volumes of CaO during 10 cycles of CaO/Ca(OH)2
Sample | Surface area/(m2‧g-1) | Pore volume/(cm3‧g-1) |
---|---|---|
Original CaO | 13 | 0.05 |
CaO after 10 cycles | 18 | 0.10 |
1 | Hayat M. B., Ali D., Monyake K. C., Alagha L., Ahmed N., Int. J. Energy Res., 2019, 43(3), 1049—1067 |
2 | Suresh C., Saini R. P., Int. J. Energy Res., 2021, 45(4), 5730—5746 |
3 | Zhang X., Wang Y. P., Huang Q. W., Cui Y., Modern Chemical Industry, 2017, 37(9), 66—69 |
张鑫, 王一平, 黄群武, 崔勇. 现代化工, 2017, 37(9), 66—69 | |
4 | Luo T., Luo C., Shi Z. W., Li X. S., Wu F., Zhang L. Q., Sep. Purif. Technol., 2022, 292, 121081 |
5 | Suresh C., Saini R. P., Exp. Heat Transfer, 2022, 35(1), 45—61 |
6 | Sun J. Q., Zhang R. Y., Materials Reports, 2005, (8), 99—101, 105 |
孙建强, 张仁元. 材料导报, 2005, (8), 99—101, 105 | |
7 | Bate D., Zhang J. Y., Wang Y. B., Li P., Wang Z., Wang X. B., Tan H. Z., Clean Coal Technology, 2021, 27(3), 204—210 |
巴特德力格, 张嘉烨, 王永兵, 李鹏, 王昭, 王学斌, 谭厚章. 洁净煤技术, 2021, 27(3), 204—210 | |
8 | Liu D., Long X.F., Lou B., Zhou S. Q., Xu Y., Int. J. Energy Res., 2018, 42(15), 4546—4561 |
9 | Sun J., Sun Y., Yang Y. D., Tong X. L., Liu W. Q., Appl. Energy, 2019, 242, 919—930 |
10 | Ervin G., J. Solid State Chem., 1977, 22(1), 51—61 |
11 | Criado Y. A., Alonso M., Abanades J. C., Ind. Eng. Chem. Res., 2014, 53(32), 12594—12601 |
12 | Lin S., Harada M., Suzuki Y., Hiroyuki H., Energy Fuels, 2006, 20(3), 903—908 |
13 | Yan J., Zhao C. Y., Pan Z. H., Energy, 2017, 124, 114—123 |
14 | Fujii I., Ishino M., Akiyama S., Murthy M. S., Rajanandam K. S., Sol. Energy, 1994, 53, 329—341 |
15 | Ma Z. K., Li Y. J., Zhang W., Wang Y. Z., Zhao J. L., Wang Z. Y., Energy, 2020, 207, 118291 |
16 | Schaube F., Utz I., Wörner A., Müller⁃Steinhagen H., Chem. Eng. Res. Des., 2013, 91(5), 856—864 |
17 | Roßkopf C., Haas M., Faik A., Linder M., Energy Convers. Manage., 2014, 86, 93—98 |
18 | Sakellariou K. G., Karagiannakis G., Criado Y. A., Konstandopoulos A., Sol. Energy, 2015, 122, 215—230 |
19 | Criado Y. A., Alonso M., Abanades J. C., Sol. Energy, 2016, 135, 800—809 |
20 | Sakellariou K. G., Criado Y. A., Tsongidis N. I., Karagiannakis G., Konstandopoulos A., Sol. Energy, 2017, 146, 65—78 |
21 | Han Y., Jiang D. D., Zhang J. L., Li W., Gan Z. X., Gu J. J., Front. Chem. Sci. Eng., 2016, 10(1), 16—38 |
22 | Van Duin A. C. T., Strachan A., Stewman S., Zhang Q., Xu X., Goddard W. A. R., J. Phys. Chem. A, 2003, 107, 3803—3811 |
23 | Tian X. K., Lin S. C., Yan J., Zhao C. Y., Chem. Eng. J., 2022, 428, 131229 |
24 | Xu M., Huai X., Cai J., J. Phys. Chem. C, 2017, 121(5), 3025—3033 |
25 | Van Duin A. C. T., Dasgupta S., Lorant F., Goddard W., J. Phys. Chem. A, 2001, 105(41), 9396—9409 |
26 | Pitman M. C., van Duin A. C. T., J. Am. Chem. Soc., 2012, 134(6), 3042—3053 |
27 | Manzano H., Pellenq R. J. M., Ulm F. J., Buehler M. J., Van Duin A. C. T., Langmuir, 2012, 28(9), 4187—4197 |
28 | Yuan Y., Li Y., Duan L. B., Liu H. T., Zhao J. L., Wang Z. Y., Energy Convers. Manage., 2018, 174, 8—19 |
29 | Valverde J. M., Sanchez⁃Jimenez P. E., Perez⁃Maqueda L. A., Environ. Sci. Technol., 2014, 48(16), 9882—9889 |
30 | Zhang Y., Zhang J., J. Mater. Res., 2016, 31(15), 2233—2243 |
[1] | FU Zhongheng, CHEN Xiang, YAO Nan, YU Legeng, SHEN Xin, ZHANG Rui, ZHANG Qiang. Research Advances in Transport Mechanism of Lithium Ions in Solid Electrolytes [J]. Chem. J. Chinese Universities, 2023, 44(5): 20220703. |
[2] | SHEN Qi, CHEN Haiyao, GAO Denghui, ZHAO Xi, NA Risong, LIU Jia, HUANG Xuri. Interaction Mechanism of the Natural Product Falcarindiol and Human GABAA Receptor [J]. Chem. J. Chinese Universities, 2023, 44(2): 20220500. |
[3] | LI Jichen, CAI Shanshan, PENG Jubo, LI Hongfei, DUAN Xiaozheng. Molecular Dynamics Simulation of Structural Variations of Ionic Polymeric Vesicles under Electric Field [J]. Chem. J. Chinese Universities, 2023, 44(2): 20220553. |
[4] | HAO Qinghai, YANG Fan, QING Che, TAN Hongge. Surface Morphologies of Polyzwitterionic Brushes Induced by Electrostatic Strength and Counterion Valence [J]. Chem. J. Chinese Universities, 2023, 44(12): 20230279. |
[5] | ZHOU Zihao, WANG Sihao, HUANG Daichuan, LIU Bo, NING Hongbo. Molecular Dynamics Simulation Study on High Temperature Oxidation Mechanism of n-Propylbenzene [J]. Chem. J. Chinese Universities, 2023, 44(11): 20230276. |
[6] | LIAO Shouwei, LIU Yanchang, SHI Zenan, ZHAO Daohui, WEI Yanying, LI Libo. Molecular Dynamics Simulation of Ion Adsorption at Water/Graphene Interface: Force Field Parameter Optimization and Adsorption Mechanism [J]. Chem. J. Chinese Universities, 2023, 44(10): 20230155. |
[7] | GAO Zhiwei, LI Junwei, SHI Sai, FU Qiang, JIA Junru, AN Hailong. Analysis of Gating Characteristics of TRPM8 Channel Based on Molecular Dynamics [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220080. |
[8] | HU Bo, ZHU Haochen. Dielectric Constant of Confined Water in a Bilayer Graphene Oxide Nanosystem [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210614. |
[9] | ZHANG Mi, TIAN Yafeng, GAO Keli, HOU Hua, WANG Baoshan. Molecular Dynamics Simulation of the Physicochemical Properties of Trifluoromethanesulfonyl Fluoride Dielectrics [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220424. |
[10] | LI Congcong, LIU Minghao, HAN Jiarui, ZHU Jingxuan, HAN Weiwei, LI Wannan. Theoretical Study of the Catalytic Activity of VmoLac Non-specific Substrates Based on Molecular Dynamics Simulations [J]. Chem. J. Chinese Universities, 2021, 42(8): 2518. |
[11] | LEI Xiaotong, JIN Yiqing, MENG Xuanyu. Prediction of the Binding Site of PIP2 in the TREK-1 Channel Based on Molecular Modeling [J]. Chem. J. Chinese Universities, 2021, 42(8): 2550. |
[12] | ZENG Yonghui, YAN Tianying. Vibrational Density of States Analysis of Proton Hydration Structure [J]. Chem. J. Chinese Universities, 2021, 42(6): 1855. |
[13] | LIU Aiqing, XU Wensheng, XU Xiaolei, CHEN Jizhong, AN Lijia. Molecular Dynamics Simulation of Polymer/rod Nanocomposite [J]. Chem. J. Chinese Universities, 2021, 42(3): 875. |
[14] | QI Renrui, LI Minghao, CHANG Hao, FU Xueqi, GAO Bo, HAN Weiwei, HAN Lu, LI Wannan. Theoretical Study on the Unbinding Pathway of Xanthine Oxidase Inhibitors Based on Steered Molecular Dynamics Simulation [J]. Chem. J. Chinese Universities, 2021, 42(3): 758. |
[15] | SHEN Wenjie. Molecular-fence Catalysts for Low-temperature Oxidation of Methane to Methanol [J]. Chem. J. Chinese Universities, 2020, 41(3): 375. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||