Chem. J. Chinese Universities ›› 2025, Vol. 46 ›› Issue (3): 20240442.doi: 10.7503/cjcu20240442
• Physical Chemistry • Previous Articles Next Articles
TAN Yingjia1, CHEN Liang2, LIU Yulin1, NA Risong3, ZHAO Xi1()
Received:
2024-09-25
Online:
2025-03-10
Published:
2024-11-19
Contact:
ZHAO Xi
E-mail:zhaoxi@jlu.edu.cn
Supported by:
CLC Number:
TrendMD:
TAN Yingjia, CHEN Liang, LIU Yulin, NA Risong, ZHAO Xi. Discovery of CDK2 Inhibitors Based on Machine Learning and Molecular Dynamics Simulations[J]. Chem. J. Chinese Universities, 2025, 46(3): 20240442.
Model | Feature | AUC(%) | ACC(%) | MCC(%) | SE(%) | SP(%) |
---|---|---|---|---|---|---|
RF | MACCS | 91.73 | 84.55 | 69.16 | 82.53 | 86.57 |
ECFP6 | 93.80 | 86.80 | 74.23 | 82.37 | 91.22 | |
XGBoost | MACCS | 86.00 | 77.14 | 55.02 | 84.17 | 70.16 |
ECFP6 | 94.14 | 88.20 | 76.65 | 88.58 | 90.81 | |
GAT | Graph | 90.53 | 73.56 | 55.16 | 92.17 | 57.63 |
GCN | Graph | 91.53 | 83.10 | 64.17 | 75.36 | 87.42 |
Attentive FP | Graph | 93.11 | 86.99 | 71.13 | 88.13 | 86.99 |
Mean value | 91.55 | 82.91 | 66.50 | 84.76 | 81.54 | |
Variance | 6.58 | 26.17 | 65.30 | 25.75 | 138.63 |
Table 1 Performance of CDK2 inhibitor machine learning algorithm on validation set
Model | Feature | AUC(%) | ACC(%) | MCC(%) | SE(%) | SP(%) |
---|---|---|---|---|---|---|
RF | MACCS | 91.73 | 84.55 | 69.16 | 82.53 | 86.57 |
ECFP6 | 93.80 | 86.80 | 74.23 | 82.37 | 91.22 | |
XGBoost | MACCS | 86.00 | 77.14 | 55.02 | 84.17 | 70.16 |
ECFP6 | 94.14 | 88.20 | 76.65 | 88.58 | 90.81 | |
GAT | Graph | 90.53 | 73.56 | 55.16 | 92.17 | 57.63 |
GCN | Graph | 91.53 | 83.10 | 64.17 | 75.36 | 87.42 |
Attentive FP | Graph | 93.11 | 86.99 | 71.13 | 88.13 | 86.99 |
Mean value | 91.55 | 82.91 | 66.50 | 84.76 | 81.54 | |
Variance | 6.58 | 26.17 | 65.30 | 25.75 | 138.63 |
Model | Feature | AUC(%) | ACC(%) | MCC(%) | SE(%) | SP(%) |
---|---|---|---|---|---|---|
RF | MACCS | 90.85 | 83.14 | 66.21 | 81.88 | 84.39 |
ECFP6 | 93.80 | 86.00 | 72.55 | 79.76 | 91.77 | |
XGBoost | MACCS | 91.31 | 84.20 | 68.15 | 84.65 | 83.75 |
ECFP6 | 93.56 | 87.93 | 73.37 | 88.28 | 89.58 | |
GAT | Graph | 90.67 | 75.49 | 52.85 | 94.58 | 56.40 |
GCN | Graph | 91.00 | 81.30 | 63.72 | 73.75 | 88.72 |
Attentive FP | Graph | 92.34 | 85.96 | 70.73 | 87.63 | 86.45 |
Mean value | 91.93 | 83.43 | 66.80 | 84.36 | 83.01 | |
Variance | 1.48 | 14.50 | 42.56 | 38.64 | 124.98 |
Table 2 Performance of CDK2 inhibitor machine learning algorithm in the test set
Model | Feature | AUC(%) | ACC(%) | MCC(%) | SE(%) | SP(%) |
---|---|---|---|---|---|---|
RF | MACCS | 90.85 | 83.14 | 66.21 | 81.88 | 84.39 |
ECFP6 | 93.80 | 86.00 | 72.55 | 79.76 | 91.77 | |
XGBoost | MACCS | 91.31 | 84.20 | 68.15 | 84.65 | 83.75 |
ECFP6 | 93.56 | 87.93 | 73.37 | 88.28 | 89.58 | |
GAT | Graph | 90.67 | 75.49 | 52.85 | 94.58 | 56.40 |
GCN | Graph | 91.00 | 81.30 | 63.72 | 73.75 | 88.72 |
Attentive FP | Graph | 92.34 | 85.96 | 70.73 | 87.63 | 86.45 |
Mean value | 91.93 | 83.43 | 66.80 | 84.36 | 83.01 | |
Variance | 1.48 | 14.50 | 42.56 | 38.64 | 124.98 |
Compound | MW | HBD | HBA | TPSA/nm2 | GI absorption | QED | lgP |
---|---|---|---|---|---|---|---|
Z1766368563 | 391.3 | 2 | 7 | 0.717 | High | 0.648 | 4.487 |
Z363564868 | 419.4 | 2 | 4 | 0.872 | High | 0.630 | 3.360 |
Z1891240670 | 393.4 | 0 | 7 | 0.958 | High | 0.528 | 2.415 |
Z2701273053 | 368.4 | 0 | 6 | 0.820 | High | 0.475 | 5.003 |
Table 3 Chemoid-like analysis of the four chosen compounds
Compound | MW | HBD | HBA | TPSA/nm2 | GI absorption | QED | lgP |
---|---|---|---|---|---|---|---|
Z1766368563 | 391.3 | 2 | 7 | 0.717 | High | 0.648 | 4.487 |
Z363564868 | 419.4 | 2 | 4 | 0.872 | High | 0.630 | 3.360 |
Z1891240670 | 393.4 | 0 | 7 | 0.958 | High | 0.528 | 2.415 |
Z2701273053 | 368.4 | 0 | 6 | 0.820 | High | 0.475 | 5.003 |
System | (kJ·mol-1) | (kJ·mol-1) | (kJ·mol-1) | (kJ·mol-1) | (kJ·mol-1) | (kJ·mol-1) | (kJ·mol-1) | (kJ·mol-1) |
---|---|---|---|---|---|---|---|---|
Z1766368563⁃CDK2 | -29.73 | -200.10 | 136.64 | -26.58 | 107.06 | -226.68 | -25.31 | -94.31 |
Z1891240670⁃CDK2 | -16.50 | -197.78 | 145.86 | -21.99 | 129.36 | -219.77 | -22.70 | -64.63 |
Z363564868⁃CDK2 | -49.71 | -221.21 | 172.86 | -27.24 | 123.15 | -248.45 | -40.61 | -81.42 |
Z2701273053⁃CDK2 | -39.14 | -247.72 | 160.61 | -25.15 | 121.47 | -272.86 | -18.79 | -132.60 |
Table 4 Binding free energy of the four complex systems
System | (kJ·mol-1) | (kJ·mol-1) | (kJ·mol-1) | (kJ·mol-1) | (kJ·mol-1) | (kJ·mol-1) | (kJ·mol-1) | (kJ·mol-1) |
---|---|---|---|---|---|---|---|---|
Z1766368563⁃CDK2 | -29.73 | -200.10 | 136.64 | -26.58 | 107.06 | -226.68 | -25.31 | -94.31 |
Z1891240670⁃CDK2 | -16.50 | -197.78 | 145.86 | -21.99 | 129.36 | -219.77 | -22.70 | -64.63 |
Z363564868⁃CDK2 | -49.71 | -221.21 | 172.86 | -27.24 | 123.15 | -248.45 | -40.61 | -81.42 |
Z2701273053⁃CDK2 | -39.14 | -247.72 | 160.61 | -25.15 | 121.47 | -272.86 | -18.79 | -132.60 |
Compound | HBD | HBA | Occupancy(%) |
---|---|---|---|
Z1766368563 | Lys33⁃Side⁃NZ | Mol299⁃Side⁃O2 | 18.99 |
Asp145⁃Main⁃N | Mol299⁃Side⁃O2 | 17.59 | |
Mol299⁃Side⁃O3 | Val64⁃Main⁃O | 12.44 | |
Z2701273053 | Asp145⁃Main⁃N | Mol299⁃Side⁃O1 | 74.61 |
Lys33⁃Side⁃NZ | Mol299⁃Side⁃O2 | 28.97 | |
Ile52⁃Main⁃CA | Mol299⁃Side⁃F | 21.44 | |
Z363564868 | Mol299⁃Side⁃N3 | Asp86⁃Side⁃OD1 | 94.30 |
Mol299⁃Side⁃N3 | Asp86⁃Side⁃CG | 32.38 | |
Glu12⁃Main⁃N | Mol299⁃Side⁃O1 | 11.34 | |
Z1891240670 | Glu12⁃Main⁃N | Mol299⁃Side⁃N2 | 67.23 |
Table 5 Hydrogen bond occupancy in simulation time
Compound | HBD | HBA | Occupancy(%) |
---|---|---|---|
Z1766368563 | Lys33⁃Side⁃NZ | Mol299⁃Side⁃O2 | 18.99 |
Asp145⁃Main⁃N | Mol299⁃Side⁃O2 | 17.59 | |
Mol299⁃Side⁃O3 | Val64⁃Main⁃O | 12.44 | |
Z2701273053 | Asp145⁃Main⁃N | Mol299⁃Side⁃O1 | 74.61 |
Lys33⁃Side⁃NZ | Mol299⁃Side⁃O2 | 28.97 | |
Ile52⁃Main⁃CA | Mol299⁃Side⁃F | 21.44 | |
Z363564868 | Mol299⁃Side⁃N3 | Asp86⁃Side⁃OD1 | 94.30 |
Mol299⁃Side⁃N3 | Asp86⁃Side⁃CG | 32.38 | |
Glu12⁃Main⁃N | Mol299⁃Side⁃O1 | 11.34 | |
Z1891240670 | Glu12⁃Main⁃N | Mol299⁃Side⁃N2 | 67.23 |
1 | Swaffer M. P., Jones A. W., Flynn H. R., Snijders A. P., Nurse P., Cell, 2016, 167(7), 1750—1761 |
2 | Arellano M., Moreno S., Int. J. Biochem. Cell. Biol., 1997, 29(4), 559—573 |
3 | Matsuura I., Denissova N. G., Wang G., He D., Long J., Liu F., Nature, 2004, 430(6996), 226—231 |
4 | Matsumoto Y., Hayashi K., Nishida E., Curr. Biol., 1999, 9(8), 429—432 |
5 | Pagano M., Pepperkok R., Lukas J., Baldin V., Ansorge W., Bartek J., Draetta G., J. Cell. Biol., 1993, 121(1), 101—111 |
6 | Hu S., Danilov A. V., Godek K., Orr B., Tafe L. J., Rodriguez⁃Canales J., Behrens C., Mino B., Moran C. A., Memoli V. A., Mustachio L. M., Cancer Res., 2015, 75(10), 2029—2038 |
7 | Tetsu O., Mccormick F., Cancer Cell, 2003, 3(3), 233—245 |
8 | Faber A. C., Chiles T. C., Cell Cycle, 2007, 6(23), 2982—2989 |
9 | Karst A. M., Jones P. M., Vena N., Ligon A. H., Liu J. F., Hirsch M. S., Etemadmoghadam D., Bowtell D. D., Drapkin R., Cancer Res., 2014, 74(4), 1141—1152 |
10 | Keck J. M., Summers M. K., Tedesco D., Ekholm⁃Reed S., Chuang L. C., Jackson P. K., Reed S. I., J. Cell. Biol., 2007, 178(3), 371—385 |
11 | Sonntag R., Giebeler N., Nevzorova Y. A., Bangen J. M., Fahrenkamp D., Lambertz D., Haas U., Hu W., Gassler N., Cubero F. J., Müller⁃Newen G., Proc. Natl. Acad. Sci., 2018, 115(37), 9282—9287 |
12 | Tadesse S., Caldon E. C., Tilley W., Wang S., J. Med. Chem., 2019, 62(9), 4233—4251 |
13 | Tadesse S., Anshabo A. T., Portman N., Lim E., Tilley W., Caldon C. E., Wang S., Drug Discov. Today, 2020, 25(2), 406—413 |
14 | Beale G., Haagensen E. J., Thomas H. D., Wang L. Z., Revill C. H., Payne S. L., Golding B. T., Hardcastle I. R., Newell D. R., Griffin R. J., Cano C., Br. J. Cancer, 2016, 115(6), 682—690 |
15 | Cheng C. K., Gustafson W. C., Charron E., Houseman B. T., Zunder E., Goga A., Gray N. S., Pollok B., Oakes S. A., James C. D., Shokat K. M., Proc. Natl. Acad. Sci., 2012, 109(31), 12722—12727 |
16 | Tripathi S. K., Muttineni R., Singh S. K., J. Theor. Biol., 2013, 334, 87—100 |
17 | Rogers D., Hahn M., J. Chem. Inf. Model, 2010, 50(5), 742—754 |
18 | Belkina A. C., Ciccolella C. O., Anno R., Halpert R., Spidlen J., Snyder⁃Cappione J. E., Nat. Commun., 2019, 10(1), 5415 |
19 | Kobak D., Berens P., Nat. Commun., 2019, 10(1), 5416 |
20 | Su X., Bai M., PLoS One, 2020, 15(8), e0238000 |
21 | Sheridan R. P., Wang W. M., Liaw A., Ma J., Gifford E. M., J. Chem. Inf. Model., 2016, 56(12), 2353—2360 |
22 | Lundberg S. M., Erion G., Chen H., DeGrave A., Prutkin J. M., Nair B., Katz R., Himmelfarb J., Bansal N., Lee S. I., Nat. Mach. Intell., 2020, 2(1), 56—67 |
23 | Rodríguez⁃Pérez R., Bajorath J., J. Med. Chem., 2020, 63(16), 8761—8777 |
24 | Trott O., Olson A. J., J. Comput. Chem., 2010, 31(2), 455—461 |
25 | Daina A., Michielin O., Zoete V., Sci. Rep., 2017, 7(1), 42717 |
26 | Xiong G., Wu Z., Yi J., Fu L., Yang Z., Hsieh C., Yin M., Zeng X., Wu C., Lu A., Chen X., Nucleic Acids Res., 2021, 49(W1), W5—W14 |
27 | Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Petersson G. A., Nakatsuji H., Li X., Caricato M., Marenich A. V., Bloino J., Janesko B. G., Gomperts R., Mennucci B., Hratchian H. P., Ortiz J. V., Izmaylov A. F., Sonnenberg J. L., Williams⁃Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V. G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery J. A., Peralta J. E., Ogliaro F., Bearpark M. J., Heyd J. J., Brothers E. N., Kudin K. N., Staroverov V. N., Keith T. A., Kobayashi R., Normand J., Raghavachari K., Rendell A.P., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Millam J. M., Klene M., Adamo C., Cammi R., Ochterski J. W., Martin R. L., Morokuma K., Farkas O., Foresman J. B., Fox D. J., Gaussian 16, Revision C.01, Gaussian Inc., Wallingford CT, 2016 |
28 | Tirado⁃Rives J., Jorgensen W. L., J. Chem. Theory. Comput., 2008, 4(2), 297—306 |
29 | Olsson M. H., Søndergaard C. R., Rostkowski M., Jensen J. H., J. Chem. Theory. Comput., 2011, 7(2), 525—537 |
30 | Case D. A., Cheatham III T. E., Darden T., Gohlke H., Luo R., Merz Jr K. M., Onufriev A., Simmerling C., Wang B., Woods R. J., J. Comput. Chem., 2005, 26(16), 1668—1688 |
31 | He X., Man V. H., Yang W., Lee T. S., Wang J., J. Chem. Phys., 2020, 153(11), 114502 |
32 | Jorgensen W. L., Chandrasekhar J., Madura J. D., Impey R. W., Klein M. L., J. Chem. Phys., 1983, 79(2), 926—935 |
33 | Hess B., Bekker H., Berendsen H. J., Fraaije J. G., J. Comput. Chem., 1997, 18(12), 1463—1472 |
34 | Darden T. A., York D. M., Pedersen L. G., J. Chem. Phys., 1993, 98(12), 10089—10092 |
35 | Kutzner C., Páll S., Fechner M., Esztermann A., de Groot B. L., Grubmüller H., J. Comput. Chem., 2019, 40(27), 2418—2431 |
36 | Humphrey W., Dalke A., Schulten K., J. Mol. Graph., 1996, 14(1), 33—38 |
37 | DeLano W. L, Protein Crystallogr., 2002, 40(1), 82—92 |
38 | Dai Y., Wang Q., Zhang X., Jia S., Zheng H., Feng D., Yu P., Eur. J. Med. Chem., 2010, 45(12), 5612—5620 |
39 | Sun H., Duan L., Chen F., Liu H., Wang Z., Pan P., Zhu F., Zhang J. Z., Hou T., Phys. Chem. Chem. Phys., 2018, 20(21), 14450—14460 |
40 | Lundberg S. M., Erion G., Chen H., DeGrave A., Prutkin J. M., Nair B., Katz R., Himmelfarb J., Bansal N., Lee S. I., Nat. Mach. Intell., 2020, 2(1), 56—67 |
41 | Rodríguez⁃Pérez R., Bajorath J., J. Med. Chem., 2020, 63(16), 8761—8777 |
[1] | HOU Zejin, LI Rongqi, LI Jian, FENG Yining, JIN Qianqian, SUN Junhong, CAO Jie. Prediction of Deep Vein Thrombosis Based on GC-MS and Machine Learning [J]. Chem. J. Chinese Universities, 2024, 45(9): 20240199. |
[2] | HAN Yugui, LIU Changlong, ZHAO Peng, ZHENG Wenwen, LIU Yuepeng, LI Yi. Interaction Between Hot Water Chemical Drive System and Thick Oil Components and Theoretical Simulation Research [J]. Chem. J. Chinese Universities, 2024, 45(6): 20230456. |
[3] | FANG Yi, LI Yingjie, ZHANG Youhao, REN Yu, HAN Kuihua, ZHAO Jianli. Study on Diffusion Mechanism of CaO/Ca(OH)2 Molecules During Thermochemical Energy Storage Process Based on Molecular Dynamics [J]. Chem. J. Chinese Universities, 2024, 45(5): 20240052. |
[4] | CAO Huawen, TANG Qiufan, QU Bei, HUO Huan, ZHENG Qilong, CAO Yilin, LI Jizhen. Multi-stage Thermal Decomposition Mechanism of Energetic Plasticizer DNTN Triggered by Cleavage of the Nitrate Ester Bond [J]. Chem. J. Chinese Universities, 2024, 45(2): 20230398. |
[5] | ZHAO Can, SUN Guangkai, LEI Bocheng, ZHANG Lili, SUN Zhaoyan, ZHU Youliang. Crystallization Behaviors of Polydisperse Ultra⁃soft Spherical System [J]. Chem. J. Chinese Universities, 2024, 45(12): 20240388. |
[6] | CAO Shuangshuang, HUANG Jiyong, LI Wei, ZHANG Houjun, LI Xiangyuan, HAN You. Optimization of Kinetic Mechanism for Methane Combustion Based on Machine Learning [J]. Chem. J. Chinese Universities, 2024, 45(10): 20240296. |
[7] | ZHANG Yan, JIANG Xingjian, LIU Ming, ZHENG Zhi, ZHANG Yong. Predict Efficiency of Organic Solar Cell with Low Generalization Error Based on Molecular Property and Device Fabrication [J]. Chem. J. Chinese Universities, 2023, 44(7): 20230165. |
[8] | FU Zhongheng, CHEN Xiang, YAO Nan, YU Legeng, SHEN Xin, ZHANG Rui, ZHANG Qiang. Research Advances in Transport Mechanism of Lithium Ions in Solid Electrolytes [J]. Chem. J. Chinese Universities, 2023, 44(5): 20220703. |
[9] | LI Jichen, CAI Shanshan, PENG Jubo, LI Hongfei, DUAN Xiaozheng. Molecular Dynamics Simulation of Structural Variations of Ionic Polymeric Vesicles under Electric Field [J]. Chem. J. Chinese Universities, 2023, 44(2): 20220553. |
[10] | SHEN Qi, CHEN Haiyao, GAO Denghui, ZHAO Xi, NA Risong, LIU Jia, HUANG Xuri. Interaction Mechanism of the Natural Product Falcarindiol and Human GABAA Receptor [J]. Chem. J. Chinese Universities, 2023, 44(2): 20220500. |
[11] | HAO Qinghai, YANG Fan, QING Che, TAN Hongge. Surface Morphologies of Polyzwitterionic Brushes Induced by Electrostatic Strength and Counterion Valence [J]. Chem. J. Chinese Universities, 2023, 44(12): 20230279. |
[12] | ZHOU Zihao, WANG Sihao, HUANG Daichuan, LIU Bo, NING Hongbo. Molecular Dynamics Simulation Study on High Temperature Oxidation Mechanism of n-Propylbenzene [J]. Chem. J. Chinese Universities, 2023, 44(11): 20230276. |
[13] | LIAO Shouwei, LIU Yanchang, SHI Zenan, ZHAO Daohui, WEI Yanying, LI Libo. Molecular Dynamics Simulation of Ion Adsorption at Water/Graphene Interface: Force Field Parameter Optimization and Adsorption Mechanism [J]. Chem. J. Chinese Universities, 2023, 44(10): 20230155. |
[14] | GAO Zhiwei, LI Junwei, SHI Sai, FU Qiang, JIA Junru, AN Hailong. Analysis of Gating Characteristics of TRPM8 Channel Based on Molecular Dynamics [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220080. |
[15] | WONG Honho, LU Qiuyang, SUN Mingzi, HUANG Bolong. Rational Design of Graphdiyne-based Atomic Electrocatalysts: DFT and Self-validated Machine Learning [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220042. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||