Chem. J. Chinese Universities ›› 2022, Vol. 43 ›› Issue (9): 20220428.doi: 10.7503/cjcu20220428
• Review • Previous Articles Next Articles
WANG Ruyue1,2, WEI Hehe3, HUANG Kai1,2(), WU Hui2(
)
Received:
2022-06-17
Online:
2022-09-10
Published:
2022-07-25
Contact:
HUANG Kai,WU Hui
E-mail:kai@bupt.edu.cn;huiwu@tsinghua.edu.cn
Supported by:
CLC Number:
TrendMD:
WANG Ruyue, WEI Hehe, HUANG Kai, WU Hui. Freezing Synthesis for Single Atom Materials[J]. Chem. J. Chinese Universities, 2022, 43(9): 20220428.
33 | Haruta M., Catal. Today, 1997, 36, 153—166 |
34 | Yoon B., Hakkinen H., Landman U., Wörz A. S., Antonietti J. M., Abbet S., Judai K., Heiz U., Science, 2005, 307, 403—407 |
35 | Tauster S. J., Fung S. C., Baker R. T. K., Horsley J. A., Science, 1981, 211, 1121—1125 |
36 | Campbell C. T., Nat. Chem., 2012, 4, 597—598 |
37 | Hu P., Huang Z., Amghouz Z., Makkee M., Xu F., Kapteijn F., Dikhtiarenko A., Chen Y., Gu X., Tang X., Angew. Chem. Int. Ed., 2014, 53, 3418 |
38 | Jones J., Xiong H., DeLaRiva A. T., Peterson E. J., Pham H., Challa S. R., Qi G., Oh S., Wiebenga M. H., Hernández X. I. P., Wang Y., Datye A. K., Science, 2016, 353, 150 |
39 | Su J., Ge R., Dong Y., Hao F., Chen L., J. Mater. Chem. A, 2018, 6, 14025 |
40 | Fei H., Dong J., Feng Y., Allen C. S., Wan C., Volosskiy B., Li M., Zhao Z., Wang Y., Sun H., An P., Chen W., Guo Z., Lee C., Chen D., Shakir I., Liu M., Hu T., Li Y., Kirkland A. I., Duan X., Huang Y., Nat. Catal., 2018, 1, 63—72 |
41 | Quan Z., Wang Y., Fang J., Acc. Chem. Res., 2013, 46, 191—202 |
42 | Feng L. L., Yu G., Wu Y., Li G. D., Li H., Sun Y., Asefa T., Chen W., Zou X., J. Am. Chem. Soc., 2015, 137, 14023—14026 |
43 | Ji S. F., Chen Y. J., Wang X. L., Zhang Z. D., Wang D. S., Li Y. D., Chem. Rev., 2020, 120, 11900—11955 |
44 | Chen Y., Ji S., Chen C., Peng Q., Wang D. S., Li Y. D., Joule, 2018, 2, 1242—1264 |
45 | Zhang W., Zheng W., Adv. Funct. Mater., 2016, 26(18), 2988—2993 |
46 | Xing L., Jin Y., Weng Y., Feng R., Ji Y., Gao H., Chen X., Zhang X., Jia D., Wang G., Matter, 2022, 5(3), 788—807 |
47 | Li Z. J., Wang D. H., Wu Y., Li Y. D., Natl. Sci. Rev., 2018, 5, 673—689 |
48 | Wang Y., Hu F. L., Mi Y., Yan C., Zhao S., Chem. Eng. J., 2021, 406(15), 127135 |
49 | Nikam A. V., Prasad B. L. V., Kulkarni A. A., CrystEngComm, 2018, 20, 5091—5107 |
50 | Guan J., Bai X., Tang T., Nano Res., 2022, 15, 818—837 |
51 | Liu W., Zhang H., Li C., Wang X., Liu J., Zhang X., J. Energy Chem., 2020, 47, 333—345 |
52 | Han Y., Wang Y. G., Chen W., Xu R., Zheng L., Zhang J., Luo J., Shen R. A., Zhu Y., Cheong W. C., Chen C., Peng Q., Wang D. S., Li Y. D., J. Am. Chem. Soc., 2017, 139, 17269—17272 |
53 | Chen P., Zhou T., Xing L., Xu K., Tong Y., Xie H., Zhang L., Yan W., Chu W., Wu C., Xie Y., Angew. Chem. Int. Ed., 2017, 56, 610—614 |
54 | Sa Y. J., Seo D. J., Woo J., Lim J. T., Cheon J. Y., Yang S. Y., Lee J. M., Kang D., Shin T. J., Shin H. S., Jeong H. Y., Kim C. S., Kim M. G., Kim T. Y., Joo S. H., J. Am. Chem. Soc., 2016, 138, 15046—15056 |
55 | Liu P., Zhao Y., Qin R., Mo S., Chen G., Gu L., Chevrier D. M., Zhang P., Guo Q., Zang D., Wu B., Fu G., Zheng N. F., Science, 2016, 352, 797—801 |
56 | Zhang J., Wu X., Cheong W. C., Chen W., Lin R., Li J., Zheng L., Yan W., Gu L., Chen C., Peng Q., Wang D. S., Li Y. D., Nat. Commun., 2018, 9, 1002 |
57 | Ida S., Kim N., Ertekin E., Takenaka S., Ishihara T., J. Am. Chem. Soc., 2015, 137, 239—244 |
58 | Zhang S., Nguyen L., Liang J. X., Shan J., Liu J. J., Frenkel A. I., Patlolla A., Huang W., Li J., Tao F. F., Nat. Commun., 2015, 6, 7938 |
59 | Liu G. L., Robertson A. W., Li M. M. J., Kuo W. C. H., Darby M. T., Muhieddine M. H., Lin Y. C., Suenaga K., Stamatakis M., Warner J. H., Tsang S. C. E., Nat. Chem., 2017, 9, 810—816 |
60 | Wan J. W., Chen W. X., Jia C. Y., Zheng L. R., Dong J. C., Zheng X. S., Wang Y., Yan W. S., Chen C., Peng Q., Wang D. S., Li Y. D., Adv. Mater., 2018, 30, 1705369 |
61 | Rivero⁃Crespo M. A., Mon M., Ferrando⁃Soria J., Lopes C. W., Boronat M., Leyva⁃Pérez A., Corma A., Hernández⁃Garrido J. C., López⁃Haro M., Calvino J. J., Ramos⁃Fernandez E. V., Armentano D., Pardo E., Angew. Chem. Int. Ed., 2018, 57, 17094—17099 |
62 | Shen K., Chen X. D., Chen J. Y., Li Y., ACS Catal., 2016, 6, 5887—5903 |
63 | Wang N., Sun Q.M., Bai R.S., Li X., Guo G.Q., Yu J. H., J. Am. Chem. Soc., 2016, 138, 7484—7487 |
64 | Jiao L., Wan G., Zhang R., Zhou H., Yu S. H., Jiang H. L., Angew. Chem. Int. Ed., 2018, 57, 8525—8529 |
65 | Kistler J. D., Chotigkrai N., Xu P., Enderle B., Praserthdam P., Chen C. Y., Browning N. D., Gates B. C., Angew. Chem. Int. Ed., 2014, 53, 8904—8907 |
66 | Kim Y. H., Heo J. S., Kim T. H., Park S., Yoon M. H., Kim J., Oh M. S., Yi G. R., Noh Y. Y., Park S. K., Nature, 2012, 489, 128—132 |
67 | Karkas M. D., Porco J. A. Jr., Stephenson C. R. J., Chem. Rev., 2016, 116, 9683—9747 |
68 | Wei H., Huang K., Wang D., Zhang R., Ge B., Ma J., Wen B., Zhang S., Li Q., Lei M., Zhang C., Irawan J., Liu L. M., Wu H., Nat. Commun., 2017, 8, 1490 |
69 | Guo Z., Wang T., Wei H., Long Y., Yang C., Wang D., Lang J., Huang K., Hussain N., Song C., Guan B., Ge B., Zhang Q., Wu H., Angew. Chem. Int. Ed., 2019, 58(36), 12569—12573 |
70 | Zhou P., Lv F., Li N., Zhang Y., Mu Z., Tang Y., Lai J., Chao Y., Luo M., Lin F., Zhou J., Su D., Guo S., Nano Energy, 2019, 56, 127—137 |
71 | Zhou P., Hou X., Chao Y., Yang W., Zhang W., Mu Z., Lai J., Lv F., Yang K., Liu Y., Li J., Ma J., Luo J., Guo S., Chem. Sci., 2019, 10, 5898—5905 |
72 | Zheng X., Tang J., Gallo A., Torres J. A. G., Yu X., Athanitis C. J., Been E M., Ercius P., Mao H., Fakra S. C., Song C., Davis R. C., Reimer J. A., Vinson J., Bajdich M., Cui Y., Proc. Natl. Acad. Sci. USA, 2021, 118(36), 2101817118 |
73 | Xia Y., Gilroy K. D., Peng H. C., Xia X., Angew. Chem. Int. Ed., 2017, 56, 60—95 |
74 | Maxwell J. C., Philosophical Magazine, 1908, 16, 818—824 |
75 | Thanh N. T., Maclean N., Mahiddine S., Chem. Rev., 2014, 114, 7610—7630 |
76 | Sleutel M., Lutsko J., Van Driessche A. E., Durán⁃Olivencia M. A., Maes D., Nat. Commun., 2014, 5, 5598 |
77 | Xia Y., Xiong Y., Lim B., Skrabalak S. E., Angew. Chem. Int. Ed., 2009, 48(1), 60—103 |
78 | Liu M., Wang K., Wang L., Han S., Fan H., Rowell N., Ripmeester J. A., Renoud R., Bian F., Zeng J., Yu K., Nat. Commun., 2017, 8,15467 |
79 | LaMer V. K., Dinegar R. H., J. Am. Chem. Soc., 1950, 72, 4847—4854 |
80 | Shi Y., Lyu Z., Zhao M., Chen R., Nguyen Q. N., Xia Y. N., Chem. Rev., 2021, 121(2), 649—735 |
81 | Loh N. D., Sen S., Bosman M., Tan S. F., Zhong J., Nijhuis C. A., Král P., Matsudaira P., Mirsaidov U., Nat. Chem., 2017, 9, 77—82 |
82 | Wei H., Huang K., Zhang L., Ge B., Wang D., Lang J., Ma J., Wang D., Zhang S., Li Q., Zhang R., Hussain N., Lei M., Liu L. M., Wu H., Angew. Chem. Int. Ed., 2018, 130(13), 3412—3417 |
83 | Wei H., Wu H., Huang K., Ge B., Ma J., Lang J., Zu D., Lei M., Yao Y., Guo W., Wu H., Chem. Sci., 2019, 10, 2830—2836 |
84 | Huang K., Zhang L., Xu T., Wei H., Zhang R., Zhang X., Ge B., Lei M., Ma J., Liu L. M., Wu H., Nat. Commun., 2019, 10, 606 |
85 | Huang K., Wang R., Wu H., Wang H., He X., Wei H., Wang S., Zhang R., Lei M., Guo W., Ge B., Wu H., J. Mater. Chem. A, 2019, 7, 25779—25784 |
1 | Seh Z. W., Kibsgaard J., Dickens C. F., Chorkendorff I., Norskov J. K., Jaramillo T. F., Science, 2017, 355, 146 |
2 | Benck J. D., Hellstern T. R., Kibsgaard J., Chakthranont P., Jaramillo T. F., ACS Catal., 2014, 4, 3957—3971 |
3 | Zhu C., Fu S., Shi Q., Du D., Lin Y., Angew. Chem. Int. Ed., 2017, 129(45), 14132—14148 |
4 | Wang J., Li Z., Wu Y., Li Y. D., Adv. Mater., 2018, 30(48), 1801649 |
5 | Mitchell S., Vorobyeva E., Pérez⁃Ramírez J., Angew. Chem. Int. Ed., 2018, 57, 15316—15329 |
6 | Qiao B., Wang A., Yang X., Allard L. F., Jiang Z., Cui Y., Liu J., Li J., Zhang T., Nat. Chem., 2011, 3, 634—641 |
7 | Yang X. F., Wang A., Qiao B., Li J., Liu J., Zhang T., Acc. Chem. Res., 2013, 46, 1740—1748 |
8 | Liu J., ACS Catal., 2017, 7, 34—59 |
9 | Yang M., Allard L. F., Flytzani⁃Stephanopoulos M., J. Am. Chem. Soc., 2013, 135, 3768—3771 |
10 | Flytzani⁃Stephanopoulos M., Acc. Chem. Res., 2014, 47, 783—792 |
11 | Jiang K., Back S., Akey A. J., Xia C., Hu Y., Liang W., Schaak D., Stavitski, E., Nørskov J. K., Siahrostami S., Wang H., Nat. Commun., 2019, 10, 3997 |
12 | Najam T., Shah S. S. A., Ding W., Jiang J., Jia L., Yao W., Li L., Wei Z. D., Angew. Chem. Int. Ed., 2018, 57, 15101—15106 |
13 | Yan H., Su C., He J., Chen W., J. Mater. Chem. A, 2018, 6, 8793—8814 |
14 | Liang Z., Qu C., Xia D., Zou R., Xu Q., Angew. Chem. Int. Ed., 2018, 57, 9604—9633 |
15 | Yang H. B., Hung S. F., Liu S., Yuan K., Miao S., Zhang L., Huang X., Wang H. Y., Cai W., Chen R., Gao J., Yang X., Chen W., Huang Y., Chen H. M., Li C. M., Zhang T., Liu B., Nat. Energy, 2018, 3, 140 |
16 | Cao Y., Chen S., Luo Q., Yan H., Lin Y., Liu W., Cao L., Lu J., Yang J., Yao T., Wei S., Angew. Chem. Int. Ed., 2017, 56, 12191 |
17 | Mistry H., Reske R., Zeng Z., Zhao Z. J., Greeley J., Strasser P., Cuenya B. R., J. Am. Chem. Soc., 2014, 136, 16473—16476 |
18 | Reske R., Mistry H., Behafarid F., Roldan Cuenya B., Strasser P., J. Am. Chem. Soc., 2014, 136, 6978—6986 |
19 | Xia B. Y., Yan Y., Li N., Wu H. B., Lou X. W., Wang X., Nat. Energy, 2016, 1, 15006 |
20 | Yang Y., Lun Z. Y., Xia G. L., Zheng F. C., He M. N., Chen Q. W., Energy Environ. Sci., 2015, 8, 3563—3571 |
21 | Yang F., Deng D. H., Pan X. L., Fu Q., Bao X. H., Natl. Sci. Rev., 2015, 2, 183—201 |
22 | van Hardeveld R., Hartog F., Surf. Sci., 1969, 15, 189—230 |
23 | Gates B. C., Chem. Rev., 1995, 95, 511—522 |
24 | Lopez N., Janssens T. V. W., Clausen B. S., Xu Y., Mavrikakis M., Bligaard T., Nørskov J. K., J. Catal., 2004, 223, 232—235 |
25 | Cuenya B. R., Thin Solid Films, 2010, 518, 3127—3150 |
26 | Kubo R., J. Phys. Soc. Jpn., 1962, 17, 975—986 |
86 | Li Z., Wei W., Li H., Li S., Leng L., Zhang M., Horton J. H., Wang D., Sun W., Guo C., Wu W., Wang J., ACS Nano, 2021, 15, 10175—10184 |
27 | Johansson M. P., Sundholm D., Vaara J., Angew. Chem. Int. Ed., 2004, 116, 2732—2735 |
28 | Von Issendorff B., Cheshnovsky O., Annu. Rev. Phys. Chem., 2005, 56, 549—580 |
29 | Roduner E., Chem. Soc. Rev., 2006, 35, 583—592 |
30 | Valden M., Lai X., Goodman D. W., Science, 1998, 281, 1647-1650 |
31 | Claus P., Brückner A., Mohr C., Hofmeister H. J., J. Am. Chem. Soc., 2000, 122, 11430—11439 |
32 | Li J., Li X., Zhai H. J., Wang L. S., Science, 2003, 299, 864—867 |
[1] | YANG Jingyi, LI Qinghe, QIAO Botao. Synergistic Catalysis Between Ir Single Atoms and Nanoparticles for N2O Decomposition [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220388. |
[2] | LIN Gaoxin, WANG Jiacheng. Progress and Perspective on Molybdenum Disulfide with Single-atom Doping Toward Hydrogen Evolution [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220321. |
[3] | WANG Sicong, PANG Beibei, LIU Xiaokang, DING Tao, YAO Tao. Application of XAFS Technique in Single-atom Electrocatalysis [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220487. |
[4] | QIN Yongji, LUO Jun. Applications of Single-atom Catalysts in CO2 Conversion [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220300. |
[5] | YAO Qing, YU Zhiyong, HUANG Xiaoqing. Progress in Synthesis and Energy-related Electrocatalysis of Single-atom Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220323. |
[6] | LIN Zhi, PENG Zhiming, HE Weiqing, SHEN Shaohua. Single-atom and Cluster Photocatalysis: Competition and Cooperation [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220312. |
[7] | TANG Quanjun, LIU Yingxin, MENG Rongwei, ZHANG Ruotian, LING Guowei, ZHANG Chen. Application of Single-atom Catalysis in Marine Energy [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220324. |
[8] | TENG Zhenyuan, ZHANG Qitao, SU Chenliang. Charge Separation and Surface Reaction Mechanisms for Polymeric Single-atom Photocatalysts [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220325. |
[9] | YANG Jingyi, SHI Siqi, PENG Huaitao, YANG Qihao, CHEN Liang. Integration of Atomically Dispersed Ga Sites with C3N4 Nanosheets for Efficient Photo-driven CO2 Cycloaddition [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220349. |
[10] | WANG Xintian, LI Pan, CAO Yue, HONG Wenhao, GENG Zhongxuan, AN Zhiyang, WANG Haoyu, WANG Hua, SUN Bin, ZHU Wenlei, ZHOU Yang. Techno-economic Analysis and Industrial Application Prospects of Single-atom Materials in CO2 Catalysis [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220347. |
[11] | HUANG Qiuhong, LI Wenjun, LI Xin. Organocatalytic Enantioselective Mannich-type Addition of 5H-Oxazol-4-ones to Isatin Derived Ketimines [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220131. |
[12] | TAN Yan, YU Shen, LYU Jiamin, LIU Zhan, SUN Minghui, CHEN Lihua, SU Baolian. Efficient Preparation of Mesoporous γ-Al2O3 Microspheres and Performance of Pd-loaded Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220133. |
[13] | HAN Fuchao, LI Fujin, CHEN Liang, HE Leiyi, JIANG Yunan, XU Shoudong, ZHANG Ding, QI Lu. Enhance of CoSe2/C Composites Modified Separator on Electrochemical Performance of Li-S Batteries at High Sulfur Loading [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220163. |
[14] | ZHOU Zixuan, YANG Haiyan, SUN Yuhan, GAO Peng. Recent Progress in Heterogeneous Catalysts for the Hydrogenation of Carbon Dioxide to Methanol [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220235. |
[15] | XIA Wu, REN Yingyi, LIU Jing, WANG Feng. Chitosan Encapsulated CdSe QDs Assemblies for Visible Light-induced CO2 Reduction in an Aqueous Solution [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220192. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||