Chem. J. Chinese Universities ›› 2022, Vol. 43 ›› Issue (3): 20210655.doi: 10.7503/cjcu20210655
• Physical Chemistry • Previous Articles Next Articles
MENG Xiangyu, ZHAN Qi, WU Yanan, MA Xiaoshuang, JIANG Jingyi, SUN Yueming(), DAI Yunqian(
)
Received:
2021-09-10
Online:
2022-03-10
Published:
2021-10-13
Contact:
SUN Yueming,DAI Yunqian
E-mail:sun@seu.edu.cn;daiy@seu.edu.cn
Supported by:
CLC Number:
TrendMD:
MENG Xiangyu, ZHAN Qi, WU Yanan, MA Xiaoshuang, JIANG Jingyi, SUN Yueming, DAI Yunqian. Photothermal Enhanced Photocatalytic Hydrogenation Performance of Au/RGO/Na2Ti3O7[J]. Chem. J. Chinese Universities, 2022, 43(3): 20210655.
Fig.1 Schematic illustration of the preparation of the Au/RGO/Na2Ti3O7(A) and TEM images of RGO/Na2Ti3O7(B) and Au/RGO/Na2Ti3O7(C,D)The arrows in Fig.1(B) highlight the RGO, the white dots highlight the contact interface between RGO and Na2Ti3O7. The arrows in Fig.1(C) highlight the Au nanoparticles.
Fig.4 Normalized concentration changes of 4?NP and the corresponding catalytic conversion catalyzed by Au/RGO/Na2Ti3O7 with different GO input contents under visible?light irradiation(A), the conversion efficiency from 4?NP to 4?AP catalyzed by Au/RGO/Na2Ti3O7 with different GO input contents under visible?light irradiation(B)
Catalyst | P/(J·s-1) | η(%) | K/min-1 | TOF/min-1 | TOFmass/(min-1·μg-1) | Ref. |
---|---|---|---|---|---|---|
66%?Au/RGO/Na2Ti3O7 | 153 | 18.2 | 0.240 | 38.2 | 7.17 | This work |
60%?Au/RGO/Na2Ti3O7 | 112 | 13.4 | 0.399 | 54.5 | 10.4 | This work |
50%?Au/RGO/Na2Ti3O7 | 101 | 12.3 | 0.278 | 51.4 | 9.87 | This work |
33%?Au/RGO/Na2Ti3O7 | 98.9 | 11.7 | 0.137 | 37.9 | 7.30 | This work |
Fe3O4@Ag | — | — | — | 17.1 | — | [ |
Au/N?doped carbon | — | — | — | 11.4 | — | [ |
Au/Co3O4 | — | — | — | 5.01 | — | [ |
Table 1 Comparison on photocatalytic and photothermal performance of different photocatalytic systems*
Catalyst | P/(J·s-1) | η(%) | K/min-1 | TOF/min-1 | TOFmass/(min-1·μg-1) | Ref. |
---|---|---|---|---|---|---|
66%?Au/RGO/Na2Ti3O7 | 153 | 18.2 | 0.240 | 38.2 | 7.17 | This work |
60%?Au/RGO/Na2Ti3O7 | 112 | 13.4 | 0.399 | 54.5 | 10.4 | This work |
50%?Au/RGO/Na2Ti3O7 | 101 | 12.3 | 0.278 | 51.4 | 9.87 | This work |
33%?Au/RGO/Na2Ti3O7 | 98.9 | 11.7 | 0.137 | 37.9 | 7.30 | This work |
Fe3O4@Ag | — | — | — | 17.1 | — | [ |
Au/N?doped carbon | — | — | — | 11.4 | — | [ |
Au/Co3O4 | — | — | — | 5.01 | — | [ |
Scheme 1 Schematic illustration of the photothermal?promoted photocatalytic reaction catalyzed by Au/RGO/Na2Ti3O7 with different RGO contents under visible?light irradiation
Fig.6 Conversion of 4?NP catalyzed by Au/RGO/Na2Ti3O7 with different GO input contents in visible light irradiation and dark condition within 10 min(A), the conversion of 4?NP catalyzed by 60%?Au/RGO/Na2Ti3O7 under visible?light irradiation with different wavelengths(B)
Catalyst | Temperature increment/℃ | Wavelength of light irradiation/nm | ηquantum (%) |
---|---|---|---|
60%?Au/RGO/Na2Ti3O7 | 6.6 | 450 | 54.4 |
60%?Au/RGO/Na2Ti3O7 | 6.15 | 500 | 47.5 |
60%?Au/RGO/Na2Ti3O7 | 6.3 | 550 | 44.4 |
Table 2 Temperature increment of reaction system and quantum efficiency of Au/RGO/Na2Ti3O7under light with different wavelengths
Catalyst | Temperature increment/℃ | Wavelength of light irradiation/nm | ηquantum (%) |
---|---|---|---|
60%?Au/RGO/Na2Ti3O7 | 6.6 | 450 | 54.4 |
60%?Au/RGO/Na2Ti3O7 | 6.15 | 500 | 47.5 |
60%?Au/RGO/Na2Ti3O7 | 6.3 | 550 | 44.4 |
Fig.7 Relationship between reaction rate and reaction temperature(A), scheme for illustrating activation energy of reactions under light and dark(B), schematic illustration for the reaction route with(C) and without(D) light?induced photothermal enhancement of 4?NP catalyzed by 60%?Au/RGO/Na2Ti3O7
44 | Buscema M., Groenendijk D. J., Blanter S. I., Steele G. A., van der Zant H. S. J., Castellanos⁃Gomez A., Nano Lett., 2014, 14, 3347—3352 |
45 | Jacob M., Arvin G., Microelectronics, McGraw⁃Hill, New York, 1987 |
46 | Chen S., Fu H., Zhang L., Wan Y., Appl. Catal. B, 2019, 248, 22—30 |
47 | Zhou W., Zhou Y., Liang Y., Feng X., Zhou H., RSC Adv., 2015, 5, 50505—50511 |
48 | Yang Y., Luo S., Guo S., Chao Y., Yang H., Li Y., Int. J. Hydrog. Energy, 2017, 42, 29236—29243 |
49 | Chen Y. C., Hsu Y. K., Popescu R., Gerthsen D., Lin Y. G., Feldmann C., Nat. Commun., 2018, 9, 232 |
50 | Tagliabue G., DuChene J. S., Abdellah M., Habib A., Gosztola D. J., Hattori Y., Cheng W. H., Zheng K., Canton S. E., Sundararaman R., Nat. Mater., 2020, 19, 1312—1318 |
51 | Kwon S. J., Han T. H., Ko T. Y., Li N., Kim Y., Kim D. J., Bae S. H., Yang Y., Hong B. H., Kim K. S., Nat. Commun., 2018, 9, 2037 |
52 | Moon J. Y., Kim M., Kim S. I., Xu S., Choi J. H., Whang D., Watanabe K., Taniguchi T., Park D. S., Seo J., Sci. Adv., 2020, 6, eabc6601 |
53 | Meng X. Y., Yang J. H., Ramakrishna S., Sun Y. M., Dai Y. Q., J. Mater. Chem. A, 2020, 8, 16570—16581 |
54 | Lang Q., Chen Y., Huang T., Yang L., Zhong S., Wu L., Chen J., Bai S., Appl. Catal. B, 2018, 220, 182—190 |
55 | Han B., Zhang Y., Chen Q., Sun H., Adv. Funct. Mater., 2018, 28, 1802235 |
56 | Zhu M. Y., Dai Y. Q., Fu W. L., Wu Y. N., Zou X. X., You T. Y., Sun Y. M., Nanotechnology, 2018, 29, 165707 |
57 | Ashter S. A., Mechanics of Materials, William Andrew Publishing, New York, 2014 |
58 | Iben Ayad A., Luart D., Ould Dris A., Guénin E., Nanomaterials, 2020, 10, 1169 |
59 | Sahiner N., Demirci S., Asia⁃Pac J. Chem. Eng., 2019, 14, e2305 |
60 | Naseem K., Begum R., Wu W., Irfan A., Nisar J., Azam M., Farooqi Z., Int. J. Environ. Sci. Tech., 2021, 18, 1809—1820 |
61 | Verma A., Pal S., Kuntail J., Kamal N., Mandal R. K., Sinha I., J. Environ. Chem. Eng., 2021, 9, 105655 |
62 | Farrag M., Microporous Mesoporous Mater., 2016, 232, 248—255 |
63 | Li C., Wang P., Tian Y., Xu X., Hou H., Wang M., Qi G., Jin Y., ACS Catal., 2017, 7, 5391—5398 |
64 | Zhou Y., Zhu Y., Yang X., Huang J., Chen W., Lv X., Li C., Li C., RSC Adv., 2015, 5, 50454—50461 |
65 | Bhogeswararao S., Pavan Kumar V., Chary K., Srinivas D., Catal. Lett., 2013, 143, 1266—1276 |
66 | Wang G., Xin H., Wang Q., Wu P., Li X., J. Catal., 2020, 382, 1—12 |
67 | Huang X., Zhang L., Li C., Tan L., Wei Z., ACS Catal., 2019, 9, 11307—11316 |
68 | Hao C. H., Guo X. N., Pan Y. T., Chen S., Jiao Z. F., Yang H., Guo X. Y., J. Am. Chem. Soc., 2016, 138, 9361—9364 |
1 | Zhao Y. F., Li Z. H., Li M. Z., Liu J. J., Liu X. W., Waterhouse G. I. N., Wang Y. S., Zhao J. Q., Gao W., Zhang Z. S., Long R., Zhang Q. H., Gu L., Liu X., Wen X. D., Ma D., Wu L. Z., Tung C. H., Zhang T. R., Adv. Mater., 2018, 30, 1803127 |
2 | Chen G. B., Gao R., Zhao Y. F., Li Z. H., Waterhouse G. I. N., Shi R., Zhao J. Q., Zhang M. T., Shang L., Sheng G. Y., Zhang X. P., Wen X. D., Wu L. Z., Tung C. H., Zhang T. R., Adv. Mater., 2018, 30, 1704663 |
3 | Shi R., Cao Y. H., Bao Y. J., Zhao Y. F., Waterhouse G. I. N., Fang Z. Y., Wu L. Z., Tung C. H., Yin Y. D., Zhang T. R., Adv. Mater., 2017, 29, 1700803 |
4 | Wu X., Gao T., Han C. H., Xu J. S., Owens G., Xu H. L., Sci. Bull., 2019, 64, 1625—1633 |
5 | Cai M., Wu Z., Li Z., Wang L., Sun W., Tountas A., Li C., Wang S., Feng K., Xu A., Tang S., Tavasoli A., Peng M., Liu W., Helmy A., He L., Ozin G., Zhang X., Nat. Energy, 2021, 6, 807—814 |
6 | Xin Y., Yu K., Zhang L., Yang Y., Yuan H., Li H., Wang L., Zeng J., Adv. Mater., 2021, 33, 2008145 |
7 | Mateo D., Cerrillo J. L., Durini S., Gascon J., Chem. Soc. Rev., 2021, 50, 2173—2210 |
8 | Li Y., Hao J., Song H., Zhang F., Bai X., Meng X., Zhang H., Wang S., Hu Y., Ye J., Nat. Comm., 2019, 10, 2359 |
9 | Yin D., Zhang J., Li W., Fu Y., Catal. Lett., 2021, 151, 1902—1910 |
10 | Zhang N., Yang M. Q., Liu S., Sun Y., Xu Y. J., Chem. Rev., 2015, 115, 10307—10377 |
11 | Meng X. Y., Yang J. H., Liu W., Ramakrishna S., Sun Y. M., Dai Y. Q., ACS Appl. Mater. Interfaces, 2021, 13, 26561—26572 |
12 | Gan Z., Wu X., Meng M., Zhu X., Yang L., Chu P. K., ACS Nano, 2014, 8, 9304—9310 |
13 | Zedan A. F., Moussa S., Terner J., Atkinson G., El⁃Shall M. S. J. A. N., ACS Nano, 2013, 7, 627—636 |
14 | Wu F. R., Liu Y. J., Lu X. M., Zhu B. S., Chem. J. Chinese Universities, 2020, 41(3), 465—472 (邬丰任, 刘永佳, 陆学民, 朱邦尚. 高等学校化学学报, 2020, 41(3), 465—472) |
15 | Inagaki T., Kagami K., Arakawa E. T., Phys. Rev. B, 1981, 24, 3644—3646 |
16 | Wang S., Zeng B., Li C., Chinese J. Catal., 2018, 39, 1219—1227 |
17 | Zhang Q., Fan X., Wang H., Chen S., Quan X., RSC Adv., 2016, 6, 41114—41121 |
18 | Zhou Y., Zhu Y. H., Yang X. L., Huang J. F., Chen W., Lv X. M., Li C. Y., Li C. Z., RSC Adv., 2015, 5, 50454—50461 |
19 | Dai Y. Q., Lu P., Cao Z. M., Campbell C. T., Xia Y. N., Chem. Soc. Rev., 2018, 47, 4314—4331 |
20 | Bavykin D. V., Friedrich J. M.,Walsh F. C., Adv. Mater., 2006, 18, 2807—2824 |
21 | Kong D., Wang Y., Huang S., Lim Y. V., Zhang J., Sun L., Liu B., Chen T., Valdivia Y., Alvarado P., Yang H. Y., J. Mater. Chem. A, 2019, 7, 12751—12762 |
22 | Yang J., Mou C. Y., Appl. Catal. B, 2018, 231, 283—291 |
23 | Wang X. T., Zhu M. Y., Sun Y. M., Fu W. L., Gu Q., Zhang C., Zhang Y. J., Dai Y. Q., Sun Y. M., Part. Part. Syst. Charact., 2016, 33, 140—149 |
24 | Wang X. M., Tao L. Q., Yuan M., Wang Z. P., Yu J., Xie D., Luo F., Chen X., Wong C., Nat. Commun., 2021, 12,1776 |
25 | Zhong X., Sun Y., Chen X., Zhuang G., Li X., Wang J. G., Adv. Funct. Mater., 2016, 26, 5778—5786 |
26 | Dai Y. Q., Jing Y., Zeng J., Qi Q., Wang C. L., Goldfeld D., Xu C. H., Zheng Y. P., Sun Y. M., J. Mater. Chem., 2011, 21, 18174—18179 |
27 | Xu L., Yang L., Bai X., Du X., Wang Y., Jin P., Chem. Eng. J., 2019, 373, 238—250 |
28 | Liu J., Ke J., Li D., Sun H., Liang P., Duan X., Tian W., Tade M. O., Liu S., Wang S., ACS Appl. Mater. Interfaces, 2017, 9, 11678—11688 |
29 | Lv N., Li Y., Huang Z., Li T., Ye S., Dionysiou D. D., Song X., Appl. Catal. B, 2019, 246, 303—311 |
30 | Wu Y. N., Sun Y. B., Fu W. L., Meng X. Y., Zhu M. Y., Ramakrishna S., Dai Y. Q., ACS Appl.Nano Mater., 2020, 3, 2713—2722 |
31 | Yu H., Peng Y., Yang Y., Li Z. Y., npj Comput. Mater., 2019, 5,45 |
32 | Tang J., Yan X., Huang W., Engelbrekt C., Duus J., Ulstrup J., Xiao X., Zhang J., Biosens. Bioelectron., 2020, 167, 112500 |
33 | Moon I. K., Lee J., Ruoff R. S., Lee H., Nat. Commun., 2010, 1, 73 |
34 | Kong X. K., Sun Z. Y., Chen M., Chen C. L., Chen Q. W., Energy Environ. Sci., 2013, 6, 3260—3266 |
35 | Ruan M., Song P., Liu J., Li E., Xu W., J. Phys. Chem. C, 2017, 121, 25882—25887 |
36 | Zhang P., Shao C., Zhang Z., Zhang M., Mu J., Guo Z., Liu Y., Nanoscale, 2011, 3, 3357—3363 |
37 | Strachan J., Barnett C., Masters A. F., Maschmeyer T., ACS Catal., 2020, 10, 5516—5521 |
38 | Li C., Wang P., Tian Y., Xu X., Hou H., Wang M., Qi G., Jin Y., ACS Catal., 2017, 7, 5391—5398 |
39 | Gao L., Li R., Sui X., Li R., Chen C., Chen Q., Environ. Sci. Technol., 2014, 48, 10191 |
40 | Liu Y., Xu H., Yu H., Yang H., Chen T., Sci. Rep., 2020, 10, 20075 |
41 | Najafi M., Azizian S., Appl. Nanosci., 2020, 10,3827—3837 |
42 | Jakhar R., Yap J. E., Joshi R., Carbon, 2020, 170, 277—293 |
43 | Cheng R., Yin L., Hu R., Liu H., Wen Y., Liu C., He J., Adv. Mater., 2021, 33, 2008329 |
[1] | QIN Yongji, LUO Jun. Applications of Single-atom Catalysts in CO2 Conversion [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220300. |
[2] | LIN Zhi, PENG Zhiming, HE Weiqing, SHEN Shaohua. Single-atom and Cluster Photocatalysis: Competition and Cooperation [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220312. |
[3] | TENG Zhenyuan, ZHANG Qitao, SU Chenliang. Charge Separation and Surface Reaction Mechanisms for Polymeric Single-atom Photocatalysts [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220325. |
[4] | XIA Wu, REN Yingyi, LIU Jing, WANG Feng. Chitosan Encapsulated CdSe QDs Assemblies for Visible Light-induced CO2 Reduction in an Aqueous Solution [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220192. |
[5] | ZHAO Yingzhe, ZHANG Jianling. Applications of Metal-organic Framework-based Material in Carbon Dioxide Photocatalytic Conversion [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220223. |
[6] | QIU Liqi, YAO Xiangyang, HE Liangnian. Visible-light-driven Selective Reduction of Carbon Dioxide Catalyzed by Earth-abundant Metalloporphyrin Complexes [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220064. |
[7] | YU Pengdong, GUAN Xinghua, WANG Dongdong, XIN Zhirong, SHI Qiang, YIN Jinghua. Preparation and Properties of Novel Optical and Thermal Dual Response Shape Memory Polymers [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220085. |
[8] | WANG Guangqi, BI Yiyang, WANG Jiabo, SHI Hongfei, LIU Qun, ZHANG Yu. Heterostructure Construction of Noble-metal-free Ternary Composite Ni(PO3)2-Ni2P/CdS NPs and Its Visible Light Efficient Catalytic Hydrogen Production [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220050. |
[9] | TAO Yu, OU Honghui, LEI Yongpeng, XIONG Yu. Research Progress of Single-atom Catalysts in Photocatalytic Reduction of Carbon Dioxide [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220143. |
[10] | FENG Li, SHAO Lanxing, LI Sijun, QUAN Wenxuan, ZHUANG Jinliang. Synthesis of Ultrathin Sm-MOF Nanosheets and Their Visible-light Induced Photodegradation of Mustard Simulant [J]. Chem. J. Chinese Universities, 2022, 43(4): 20210867. |
[11] | GUO Biao, ZHAO Chencan, LIU Xinxin, YU Zhou, ZHOU Lijing, YUAN Hongming, ZHAO Zhen. Effects of Surface Hydrothermal Carbon Layer on the Photocatalytic Activity of Magnetic NiFe2O4 Octahedron [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220472. |
[12] | LI Chenchen, NA Yong. g-C3N4/CdS/Ni Composite as a Bifunctional Photocatalyst for H2 Generation and 5-Hydroxymethylfurfural Oxidation [J]. Chem. J. Chinese Universities, 2021, 42(9): 2896. |
[13] | WANG Peng, YANG Min, TANG Sengpei, CHEN Feitai, LI Youji. Preparation of Cellular C3N4/CoSe2/GA Composite Photocatalyst and Its CO2 Reduction Activity [J]. Chem. J. Chinese Universities, 2021, 42(6): 1924. |
[14] | YANG Sixian, ZHONG Wenyu, LI Chaoxian, SU Qiuyao, XU Bingjia, HE Guping, SUN Fengqiang. Photochemical Fabrication and Performance of Polyaniline Nanowire/SnO2 Composite Photocatalyst [J]. Chem. J. Chinese Universities, 2021, 42(6): 1942. |
[15] | ZHAO Xue, ZHANG Ange, TIAN Hongrui, WANG Henan, HUO Haiyan, LIU Shuxia. Synthesis and Photocatalytic Degradation Activity of Two Inorganic-organic Hybrids Based on Keggin-type Heteropolyacids [J]. Chem. J. Chinese Universities, 2021, 42(6): 1723. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||